Skip to main content
Log in

Application of Pell collocation method for solving the general form of time-fractional Burgers equations

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper provides a fruitful and effective spectral scheme based on the two-dimensional Pell collocation method for treating of nonlinear time-fractional Burgers equations with variable coefficients. The fractional Burgers equation is a beneficial model for describing the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. In order to provide a numerical scheme, we consider the two-dimensional Pell polynomials and estimate the Caputo fractional derivative as well as other terms in the main equation by operational matrices. By collocating resultant approximate equations and initial-boundary conditions, a nonlinear system of equations arises, which can be solved via \(\texttt {fsolve}\) command in MATLAB. The convergence of the numerical scheme is fully discussed. Several test problems are presented for comparing our results with other numerical methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ostalczyk, P., Sankowski, D., Nowakowski, J.: Non-integer Order Calculus and its Applications. Springer, Berlin (2018)

  2. Kumar, D., Singh, J.: Fractional Calculus in Medical and Health Science. CRC Press (2020)

  3. Li, C., Cai, M.: Theory and numerical approximations of fractional integrals and derivatives. Society for Industrial and Applied Mathematics (2019)

  4. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC (2019)

  5. Al Smadi, M., Abu Arqub, O., Gaith, M.: Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. 44(10), 8472–8489 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations. Eng. Comput., pp. 1–15 (2020)

  7. Saw, V., Kumar, S.: The Chebyshev collocation method for a class of time fractional convection-diffusion equation with variable coefficients. Math. Methods Appl. Sci. 44(8), 6666–6678 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nikan, O., Molavi-Arabshai, S.M., Jafari, H.: Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete. Contin. Dyn-Syst. 14(10), 3685 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Nikan, O., Golbabai, A., Machado, J.A.T., Nikazad, T.: Numerical approximation of the time fractional cable model arising in neuronal dynamics. Eng. Comput. pp. 1–19 (2020)

  10. Nikan, O., Avazzadeh, Z., Machado, J.A.T.: Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun. Nonlinear. Sci. Numer. Simul. 99, 105755 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nikan, O., Avazzadeh, Z., Machado, J.A.T.: A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer. J. Adv. Res. (2021)

  12. Nikan, O., Avazzadeh, Z., Machado, J.A.T.: An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J. King. Saud. Univ. Sci. 33(1), 101243 (2021)

    Article  Google Scholar 

  13. Wang, P.: Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain. Appl. Math. Lett. 112, 106710 (2021)

  14. Heydari, M.H., Razzaghi, M., Avazzadeh, Z.: Numerical investigation of variable-order fractional Benjamin–Bona–Mahony–Burgers equation using a pseudo-spectral method. Math. Methods. Appl. Sci. 44(11), 8669–8683 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, F., Xu, X.: The third kind Chebyshev wavelets collocation method for solving the time-fractional convection diffusion equations with variable coefficients. Appl. Math. Comput. 280, 11–29 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Duangpan, A., Boonklurb, R., Treeyaprasert, T.: finite integration method with shifted Chebyshev polynomials for solving time-fractional Burgers’ equations. Mathematics 7(12), 1201 (2019)

    Article  Google Scholar 

  17. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40(11–12), 6069–6081 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, Y., Mohammadi Zadeh, F., Noori Skandari, M.H., Ahsani Tehrani, H., Tohidi, E.: Space-time Chebyshev spectral collocation method for nonlinear time-fractional Burgers equations based on efficient basis functions. Math. Methods Appl. Sci. 44(5), 4117–4136 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiu, W., Chen, H., Zheng, X.: An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Math. Comput. Simul. 166, 298–314 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Majeed, A., Kamran, M., Iqbal, M.K., Baleanu, D.: Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method. Adv. Differ. Equ. 1, 1–15 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Izadkhah, M.M., Saberi-Nadjafi, J.: Gegenbauer spectral method for time-fractional convection-diffusion equations with variable coefficients. Math. Methods Appl. Sci. 38(15), 3183–3194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Horadam, A.F., Mahon, J.M.: Pell and pell-lucas polynomials. Fibonacci. Q. 23(1), 7–20 (1985)

  23. Nemati, S., Lima, P.M., Ordokhani, Y.: Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials. J. Comput. Appl. Math. 242, 53–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nemati, S., Ordokhani, Y.: Legendre expansion methods for the numerical solution of nonlinear 2D Fredholm integral equations of the second kind. J. Appl. Math. Inform. 31(5–6), 609–621 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dehestani, H., Ordokhani, Y.: A modified numerical algorithm based on fractional Euler functions for solving time-fractional partial differential equations. Int. J. Comput. Math., 1–19 (2021)

  26. Chen, L.J., Li, M.Z., Xu, Q.: Sinc-Galerkin method for solving the time fractional convection-diffusion equation with variable coefficients. Adv. Differ. Equ. 1, 1–16 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Saadatmandi, A., Dehghan, M., Azizi, M.R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4125–4136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336, 433–453 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Chen, Y., Wua, Y., Cuib, Y., Wanga, Z., Jin, D.: Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J. Comput. Sci. 1(3), 146–149 (2010)

    Article  Google Scholar 

  30. Adibmanesha, L., Rashidiniab, J.: Sinc and B-Spline scaling functions for time-fractional convection-diffusion equations. J. King. Saud. Univ. Sci. 33(2), 101343 (2021)

    Article  Google Scholar 

  31. Biazar, J., Asadi, M.A.: Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients. Comput. Methods Differ. Equ. 7(1), 1–15 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Dehestani, H., Ordokhani, Y., Razzaghi, M.: A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. Rev. R. Acad. Cienc. Exactas. Fís. Nat. Ser. A. Mat. RACSAM. 113(4), 3297–3321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, J., Huang, Y., Zeng, T.: L1-Multiscale Galerkin’s scheme with multilevel augmentation algorithm for solving time fractional burgers’ equation. J. Funct. Spac. (2021)

  34. Zhu, X., Nie, Y., On a collocation method for the time-fractional convection-diffusion equation with variable coefficients. arXiv preprint arXiv:1604.02112 (2016)

  35. Tasbozan, O.: Numerical solution of time fractional Burgers equation. Acta Univ. Sapientiae. Math. 7(2), 167–185 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Esen, A., Tasbozan, O.: Numerical solution of time fractional Burgers equation by cubic B-spline finite elements. Mediterr. J. Math. 13(3), 1325–1337 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aminikhah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghipour, M., Aminikhah, H. Application of Pell collocation method for solving the general form of time-fractional Burgers equations. Math Sci 17, 183–201 (2023). https://doi.org/10.1007/s40096-021-00452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00452-y

Keywords

Mathematics Subject Classification

Navigation