Skip to main content
Log in

An efficient line search trust-region for systems of nonlinear equations

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

An improved derivative-free trust-region method to solve systems of nonlinear equations in several variables is presented, combined with the Wolfe conditions to update the trust-region radius. We believe that producing step-sizes by the Wolfe conditions can control the trust-region radius. The new algorithm for which strong global convergence properties are proved is robust and efficient enough to solve systems of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K., Kimiaei, M.: A globally convergent trust-region method for large-scale symmetric nonlinear systems. Numer. Funct. Anal. Optim. 36, 830–855 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Ahookhosh, M., Esmaeili, H., Kimiaei, M.: An effective trust-region-based approach for symmetric nonlinear systems. Int. J. Comput. Math. 90(3), 671–690 (2013)

    MATH  Google Scholar 

  3. Amini, K., Esmaeili, H., Kimiaei, M.: A nonmonotone trust-region-approach with nonmonotone adaptive radius for solving nonlinear systems. Iran. J. Numer. Anal. Optim. 6(1), 101–121 (2016)

    MATH  Google Scholar 

  4. Amini, K., Shiker, M.A.K., Kimiaei, M.: A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4OR-Q J Oper 14(2), 132–152 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bouaricha, A., Schnabel, R.B.: Tensor methods for large sparse systems of nonlinear equations. Math. Program. 82, 377–400 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Broyden, C.G.: The convergence of an algorithm for solving sparse nonlinear systems. Math. Comput. 25(114), 285–294 (1971)

    MathSciNet  MATH  Google Scholar 

  7. Buhmiler, S., Krejić, N., Lužanin, Z.: Practical quasi-Newton algorithms for singular nonlinear systems. Numer. Algorithm 55, 481–502 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods, Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2000)

    Google Scholar 

  9. Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69(231), 1099–1115 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Dennis, J.E.: On the convergence of Broyden’s method for nonlinear systems of equations. Math. Comput. 25(115), 559–567 (1971)

    MathSciNet  MATH  Google Scholar 

  11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Model. 38(11–12), 3003–3015 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Esmaeili, H., Kimiaei, M.: An efficient adaptive trust-region method for systems of nonlinear equations. Int. J. Comput. Math. 92, 151–166 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Fan, J.Y.: Convergence rate of the trust region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Fan, J.Y.: An improved trust region algorithm for nonlinear equations. Comput. Optim. Appl. 48, 59–70 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Fasano, G., Lampariello, F., Sciandrone, M.: truncated nonmonotone Gauss–Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34(3), 343–358 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Gertz, E.M.: A quasi-Newton trust-region method. Math. Program. Ser. A 100, 447–470 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Gertz, E.M.: Combination Trust-Region Line-Search Methods for Unconstrained Optimization. University of California, San Diego (1999)

    Google Scholar 

  19. Gill, PhE, Murray, W.: Algorithms for the solution of the nonlinear least-squares problem. SIAM J. Numer. Anal. 15(5), 977–992 (1978)

    MathSciNet  MATH  Google Scholar 

  20. Gill, P.E., Wright, M.H.: Department of Mathematics University of California San Diego. Course Notes for Numerical Nonlinear Optimization (2001)

  21. Griewank, A.: The global convergence of Broyden-like methods with a suitable line search. J. Aust. Math. Soc. Ser. B 28, 75–92 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Gu, G.Z., Li, D.H., Qi, L., Zhou, S.Z.: Descent directions of quasi-Newton methods for symmetric nonlinear equations. SIAM J. Numer. Anal. 40(5), 1763–1774 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Kimiaei, M.: A new class of nonmonotone adaptive trust-region methods for nonlinear equations with box constraints. Calcolo 54(3), 769–812 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Kimiaei, M., Rahpeymaii, F.: A new nonmonotone line-search trust-region approach for nonlinear systems. TOP 27, 199–232 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Kimiaei, M.: Nonmonotone self-adaptive Levenberg–Marquardt approach for solving systems of nonlinear equations. Numer. Funct. Anal. Optim. 39(21), 47–66 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Kimiaei, M., Esmaeili, H.: A trust-region approach with novel filter adaptive radius for system of nonlinear equations. Numer. Algorithms 73(4), 999–1016 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–166 (1944)

    MathSciNet  MATH  Google Scholar 

  29. Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1–11 (2011)

    MathSciNet  Google Scholar 

  30. Li, D., Fukushima, M.: A global and superlinear convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37, 152–172 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    MathSciNet  MATH  Google Scholar 

  32. Martinez, J.M.: A family of quasi-Newton methods for nonlinear equations with direct secant updates of matrix factorizations. SIAM J. Numer. Anal. 27(4), 1034–1049 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    MathSciNet  MATH  Google Scholar 

  34. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  35. Nocedal, J., Yuan, Y.X.: Combining trust-region and line-search techniques, Optimization Technology Center mar OTC 98/04 (1998)

  36. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  37. Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B., Mangasarian, O.L., Ritter, K. (eds.) Nonlinear Programming. Academic Press, Cambridge (1970)

    Google Scholar 

  38. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 2, pp. 1–27. Academic Press, Cambridge (1975)

    Google Scholar 

  39. Rahpeymaii, F., Kimiaei, M., Bagheri, A.: A limited memory quasi-Newton trust-region method for box constrained optimization. J. Comput. Appl. Math. 303, 105–118 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21(5), 815–843 (1984)

    MathSciNet  MATH  Google Scholar 

  41. Thomas, S.W.: Sequential Estimation Techniques for Quasi-Newton Algorithms. Cornell University, Ithaca (1975)

    Google Scholar 

  42. Toint, PhL: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 46(173), 175–189 (1986)

    MathSciNet  MATH  Google Scholar 

  43. Toint, P.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff, I.S. (ed.) Sparse Matrices and Their Uses, pp. 57–87. New York, Academic Press (1982)

    Google Scholar 

  44. Tong, X.J., Qi, L.: On the convergence of a trust-region method for olving constrained nonlinear equations with degenerate solutions. J. Optim. Theory Appl. 123(1), 187–211 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. Computing 15, 239–249 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing 92(4), 317–333 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Yuan, Y.: Subspace methods for large scale nonlinear equations and nonlinear least squares. Optim. Eng. 10, 207–218 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Yuan, Y.: Trust region algorithm for nonlinear equations. Information 1, 7–21 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Yuan, Y.: Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numer. Algebra Control Optim. 1(1), 15–34 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Rahpeymaii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahpeymaii, F. An efficient line search trust-region for systems of nonlinear equations. Math Sci 14, 257–268 (2020). https://doi.org/10.1007/s40096-020-00339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-020-00339-4

Keywords

Navigation