Skip to main content

Advertisement

Log in

A state-of-the-art of experimentally studied adsorption water desalination systems

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Energy, freshwater, and the environment are interrelated features that infuse all human activities. Addressing this nexus in an integrated energy conversion system is a big challenge for the research community. Adsorption desalination system, which is a good alternative to traditional desalination systems, could solve this problem because it uses eco-friendly working fluids and can be powered by renewable energy. Many experimental prototypes for the adsorption desalination cycle were built and tested in the last decades. Also, different adsorbent materials were developed and characterized. Therefore, this paper reviews adsorbent materials with water vapor utilized in experimental adsorption desalination studies, which is considered the first step in constructing an efficient system. After that, the paper comprehensively reviews all previous experimental adsorption desalination studies. It focuses on the design of the experimental test rig, the mass of adsorbent material, and system performance, such as the specific daily water production, coefficient of performance, and specific cooling power. This work also discusses the properties of heat exchangers (i.e., adsorbent beds) employed in adsorption desalination systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Harby, K., Ali, E.S., Almohammadi, K.M.: A novel combined reverse osmosis and hybrid absorption desalination-cooling system to increase overall water recovery and energy efficiency. J. Clean. Prod. 287, 125014 (2021). https://doi.org/10.1016/j.jclepro.2020.125014

    Article  Google Scholar 

  2. Thu, K., Chakraborty, A., Kim, Y.D., Myat, A., Saha, B.B., Ng, K.C.: Numerical simulation and performance investigation of an advanced adsorption desalination cycle. Desalination 308, 209–218 (2013). https://doi.org/10.1016/j.desal.2012.04.021

    Article  Google Scholar 

  3. Sadri, S., Khoshkhoo, R.H., Ameri, M.: Optimum exergoeconomic modeling of novel hybrid desalination system (MEDAD+RO). Energy 149, 74–83 (2018). https://doi.org/10.1016/j.energy.2018.02.006

    Article  Google Scholar 

  4. Ali, E.S., Mohammed, R.H., Qasem, N.A.A., Zubair, S.M., Askalany, A.: Solar-powered ejector-based adsorption desalination system integrated with a humidification-dehumidification system. Energy Convers. Manag. 238, 114113 (2021). https://doi.org/10.1016/j.enconman.2021.114113

    Article  Google Scholar 

  5. Ali, E.S., Mohammed, R.H., Askalany, A.: A daily freshwater production of 50 m3/ton of silica gel using an adsorption-ejector combination powered by low-grade heat. J. Clean. Prod. 282, 124494 (2021). https://doi.org/10.1016/j.jclepro.2020.124494

    Article  Google Scholar 

  6. Askalany, A.A., Ali, E.S.: A new approach integration of ejector within adsorption desalination cycle reaching COP higher than one. Sustain. Energy Technol. Assess. 41, 100766 (2020). https://doi.org/10.1016/j.seta.2020.100766

    Article  Google Scholar 

  7. Ng, K.C., Shahzad, M.W., Son, H.S., Hamed, O.A.: An exergy approach to efficiency evaluation of desalination. Appl. Phys. Lett. 110, 184101 (2017). https://doi.org/10.1063/1.4982628

    Article  Google Scholar 

  8. Wang, X., Ng, K.C.: Experimental investigation of an adsorption desalination plant using low-temperature waste heat. Appl. Therm. Eng. 25, 2780–2789 (2005). https://doi.org/10.1016/j.applthermaleng.2005.02.011

    Article  Google Scholar 

  9. Shemer, H., Semiat, R.: Sustainable RO desalination – Energy demand and environmental impact. Desalination 424, 10–16 (2017). https://doi.org/10.1016/j.desal.2017.09.021

    Article  Google Scholar 

  10. Ding, D., Huang, J., Deng, X., Fu, K.: Recent advances and perspectives of nanostructured amorphous alloys in electrochemical water electrolysis. Energy Fuels 35, 15472–15488 (2021). https://doi.org/10.1021/acs.energyfuels.1c02706

    Article  Google Scholar 

  11. Kim, Y.D., Woo, S.Y., Lee, H.S., Ji, H.: Adsorption isotherm model for analyzing the adsorption characteristics of water vapor to commercially available silica gel adsorbents for adsorption desalination applications. J. Chem. Eng. Data. 66, 1144–1156 (2021). https://doi.org/10.1021/acs.jced.0c00927

    Article  Google Scholar 

  12. Ali, E.S., Askalany, A.A., Harby, K., Diab, M.R., Hussein, B.R.M., Alsaman, A.S.: Experimental adsorption water desalination system utilizing activated clay for low grade heat source applications. J. Energy Storage 43, 103219 (2021). https://doi.org/10.1016/j.est.2021.103219

    Article  Google Scholar 

  13. Yang, M., Wang, X., Li, J., Zheng, J.N., Jiang, L.: Effects of particle sizes on growth characteristics of propane hydrate in uniform/nonuniform sands for desalination application. Energy Fuels 36, 1003–1014 (2022). https://doi.org/10.1021/acs.energyfuels.1c03709

    Article  Google Scholar 

  14. Ali, E.S., Askalany, A.A., Harby, K., Diab, M.R., Alsaman, A.S.: Adsorption desalination-cooling system employing copper sulfate driven by low grade heat sources. Appl. Therm. Eng. 136, 169–176 (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.014

    Article  Google Scholar 

  15. Alsaman, A.S., Askalany, A.A., Harby, K., Ahmed, M.S.: Performance evaluation of a solar-driven adsorption desalination-cooling system. Energy 128, 196–207 (2017). https://doi.org/10.1016/j.energy.2017.04.010

    Article  Google Scholar 

  16. Amin, Z.M., Hawlader, M.N.A.: Analysis of solar desalination system using heat pump. Renew. Energy 74, 116–123 (2015). https://doi.org/10.1016/j.renene.2014.07.028

    Article  Google Scholar 

  17. Ali, E.S., Mohammed, R.H., Zohir, A.E., Farid, A.M., Elshaer, R.N., El-Ghetany, H.H., Askalany, A.A.: Novel ultrasonic dynamic vapor sorption apparatus for adsorption drying, cooling and desalination applications. Energy Rep. 8, 8798–8804 (2022). https://doi.org/10.1016/j.egyr.2022.06.026

    Article  Google Scholar 

  18. Askalany, A., Habib, K., Ghazy, M., Assadi, M.K.: Adsorption cooling system employing activated carbon/ hfc410a adsorption pair. ARPN J. Eng. Appl. Sci. 11, 12253–12257 (2016)

    Google Scholar 

  19. Ghazy, M., Askalany, A.A., Ibrahim, E.M.M., Mohamed, A.S.A., Ali, E.S., AL-Dadah, R.: Solar powered adsorption desalination system employing CPO-27(Ni). J. Energy Storage 53, 105174 (2022). https://doi.org/10.1016/j.est.2022.105174

    Article  Google Scholar 

  20. Ghazy, M., Ibrahim, E.M.M., Mohamed, A.S.A., Askalany, A.A.: Cooling technologies for enhancing photovoltaic–thermal (PVT) performance: a state of the art. Int. J. Energy Environ. Eng. (2022). https://doi.org/10.1007/s40095-022-00491-8

    Article  Google Scholar 

  21. Ghazy, M., Askalany, A., Kamel, A., Khalil, K.M.S., Mohammed, R.H., Saha, B.B.: Performance enhancement of adsorption cooling cycle by pyrolysis of Maxsorb III activated carbon with ammonium carbonate. Int. J. Refrig. 126, 210–221 (2021). https://doi.org/10.1016/j.ijrefrig.2020.12.036

    Article  Google Scholar 

  22. Askalany, A.A., Saha, B.B.: Towards an accurate estimation of the isosteric heat of adsorption—a correlation with the potential theory. J. Colloid Interface Sci. 490, 59–63 (2017). https://doi.org/10.1016/j.jcis.2016.11.040

    Article  Google Scholar 

  23. Zejli, D., Benchrifa, R., Bennouna, A., Bouhelal, O.K.: A solar adsorption desalination device: first simulation results. Desalination 168, 127–135 (2004). https://doi.org/10.1016/j.desal.2004.06.178

    Article  Google Scholar 

  24. Thu, K., Yanagi, H., Saha, B.B., Ng, K.C.: Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme. Desalination 402, 88–96 (2017). https://doi.org/10.1016/j.desal.2016.09.027

    Article  Google Scholar 

  25. Thu, K., Saha, B.B., Chakraborty, A., Chun, W.G., Ng, K.C.: Study on an advanced adsorption desalination cycle with evaporator-condenser heat recovery circuit. Int. J. Heat Mass Transf. 54, 43–51 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.065

    Article  MATH  Google Scholar 

  26. Ali, E.S., Askalany, A.A., Zohir, A.E.: Innovative employing of salt hydration with adsorption to enhance performance of desalination and heat transformation systems. Appl. Therm. Eng. 179, 115614 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115614

    Article  Google Scholar 

  27. Askalany, A., Ali, E.S., Mohammed, R.H.: A novel cycle for adsorption desalination system with two stages-ejector for higher water production and efficiency. Desalination 496, 114753 (2020). https://doi.org/10.1016/j.desal.2020.114753

    Article  Google Scholar 

  28. Ali, E.S., Muhammad Asfahan, H., Sultan, M., Askalany, A.A.: A novel ejectors integration with two-stages adsorption desalination: away to scavenge the ambient energy. Sustain. Energy Technol. Assess. 48, 101658 (2021). https://doi.org/10.1016/j.seta.2021.101658

    Article  Google Scholar 

  29. Bai, S., Ho, T.C., Ha, J., An, A.K., Tso, C.Y.: Study of the salinity effects on the cooling and desalination performance of an adsorption cooling cum desalination system with a novel composite adsorbent. Appl. Therm. Eng. 181, 115879 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115879

    Article  Google Scholar 

  30. Ma, H., Zhang, J., Liu, C., Lin, X., Sun, Y.: Experimental investigation on an adsorption desalination system with heat and mass recovery between adsorber and desorber beds. Desalination 446, 42–50 (2018). https://doi.org/10.1016/j.desal.2018.08.022

    Article  Google Scholar 

  31. Askalany, A.A., Ernst, S.J., Hügenell, P.P.C., Bart, H.J., Henninger, S.K., Alsaman, A.S.: High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures. Energy 141, 782–791 (2017). https://doi.org/10.1016/j.energy.2017.07.171

    Article  Google Scholar 

  32. White, J.: A CFD simulation on how the different sizes of silica gel will affect the adsorption performance of silica gel. Model. Simul. Eng. 2012, 1–12 (2012). https://doi.org/10.1155/2012/651434

    Article  Google Scholar 

  33. Thu, K., Chakraborty, A., Saha, B.B., Ng, K.C.: Thermo-physical properties of silica gel for adsorption desalination cycle. Appl. Therm. Eng. 50, 1596–1602 (2013). https://doi.org/10.1016/j.applthermaleng.2011.09.038

    Article  Google Scholar 

  34. Robens, E., Wang, X.: Investigation on the isotherm of silica gel+water systems. J. Therm. Anal. Calorim. 76, 659–669 (2004). https://doi.org/10.1023/b:jtan.0000028045.96239.7e

    Article  Google Scholar 

  35. Mohammed, R.H., Mesalhy, O., Elsayed, M.L., Su, M., Chow, C.L.: Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications. Int. J. Refrig. 86, 40–47 (2018). https://doi.org/10.1016/j.ijrefrig.2017.10.038

    Article  Google Scholar 

  36. Alsaman, A.S., Ibrahim, E.M.M., Ahmed, M.S., Askalany, A.A.: Composite adsorbent materials for desalination and cooling applications: a state of the art. Int. J. Energy Res. 46, 10345–10371 (2022). https://doi.org/10.1002/er.7894

    Article  Google Scholar 

  37. Bahgaat, A.K., Hassan, H.E., Melegy, A.A., Abd-El Kareem, A.M., Mohamed, M.H.: Synthesis and characterization of zeolite-Y from natural clay of Wadi Hagul Egypt. Egypt J Chem 63, 3791–3800 (2020). https://doi.org/10.21608/EJCHEM.2020.23195.2378

    Article  Google Scholar 

  38. Sayilgan, ŞÇ., Mobedi, M., Ülkü, S.: Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13x-water pair. Microporous Mesoporous Mater. 224, 9–16 (2016). https://doi.org/10.1016/j.micromeso.2015.10.041

    Article  Google Scholar 

  39. Kayal, S., Baichuan, S., Saha, B.B.: Adsorption characteristics of AQSOA zeolites and water for adsorption chillers. Int. J. Heat Mass Transf. 92, 1120–1127 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.060

    Article  Google Scholar 

  40. Teo, H.W.B., Chakraborty, A., Han, B.: Water adsorption on CHA and AFI types zeolites: modelling and investigation of adsorption chiller under static and dynamic conditions. Appl. Therm. Eng. 127, 35–45 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.014

    Article  Google Scholar 

  41. Henninger, S.K., Schmidt, F.P., Henning, H.M.: Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010). https://doi.org/10.1016/j.applthermaleng.2010.03.028

    Article  Google Scholar 

  42. Chaemchuen, S., Xiao, X., Klomkliang, N., Yusubov, M., Verpoort, F.: Tunable metal-organic frameworks for heat transformation applications. Nanomaterials 8, 661 (2018). https://doi.org/10.3390/nano8090661

    Article  Google Scholar 

  43. Tatlier, M., Munz, G., Henninger, S.K.: Relation of water adsorption capacities of zeolites with their structural properties. Microporous Mesoporous Mater. 264, 70–75 (2018). https://doi.org/10.1016/j.micromeso.2017.12.031

    Article  Google Scholar 

  44. Furukawa, H., Gándara, F., Zhang, Y.B., Jiang, J., Queen, W.L., Hudson, M.R., Yaghi, O.M.: Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014). https://doi.org/10.1021/ja500330a

    Article  Google Scholar 

  45. Canivet, J., Bonnefoy, J., Daniel, C., Legrand, A., Coasne, B., Farrusseng, D.: Structure-property relationships of water adsorption in metal-organic frameworks. New J. Chem. 38, 3102–3111 (2014). https://doi.org/10.1039/c4nj00076e

    Article  Google Scholar 

  46. Burtch, N.C., Jasuja, H., Walton, K.S.: Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014). https://doi.org/10.1021/cr5002589

    Article  Google Scholar 

  47. Administrator, O.J.S.T.: Metal-organic frameworks applied for water purification. Resour Technol (2018). https://doi.org/10.18799/24056537/2018/1/177

    Article  Google Scholar 

  48. Taylor, J.M., Vaidhyanathan, R., Iremonger, S.S., Shimizu, G.K.H.: Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 134, 14338–14340 (2012). https://doi.org/10.1021/ja306812r

    Article  Google Scholar 

  49. Canivet, J., Fateeva, A., Guo, Y., Coasne, B., Farrusseng, D.: Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014). https://doi.org/10.1039/c4cs00078a

    Article  Google Scholar 

  50. Jasuja, H., Burtch, N.C., Huang, Y.G., Cai, Y., Walton, K.S.: Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Langmuir 29, 633–642 (2013). https://doi.org/10.1021/la304204k

    Article  Google Scholar 

  51. Li, S., Chen, Y., Pei, X., Zhang, S., Feng, X., Zhou, J., Wang, B.: Water purification: adsorption over metal-organic frameworks. Chin J. Chem. 34, 175–185 (2016). https://doi.org/10.1002/cjoc.201500761

    Article  Google Scholar 

  52. Li, N., Xu, J., Feng, R., Hu, T.L., Bu, X.H.: Governing metal-organic frameworks towards high stability. Chem. Commun. 52, 8501–8513 (2016). https://doi.org/10.1039/c6cc02931k

    Article  Google Scholar 

  53. Towsif Abtab, S.M., Alezi, D., Bhatt, P.M., Shkurenko, A., Belmabkhout, Y., Aggarwal, H., Weseliński, ŁJ., Alsadun, N., Samin, U., Hedhili, M.N., Eddaoudi, M.: Reticular chemistry in action: a hydrolytically stable mof capturing twice its weight in adsorbed water. Chem. 4, 94–105 (2018). https://doi.org/10.1016/j.chempr.2017.11.005

    Article  Google Scholar 

  54. Reinsch, H., Marszalek, B., Wack, J., Senker, J., Gil, B., Stock, N.: A new Al-MOF based on a unique column-shaped inorganic building unit exhibiting strongly hydrophilic sorption behaviour. Chem. Commun. 48, 9486–9488 (2012). https://doi.org/10.1039/c2cc34909d

    Article  Google Scholar 

  55. Reinsch, H., van der Veen, M.A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., Stock, N.: Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum mOFs. Chem. Mater. 25, 17–26 (2013). https://doi.org/10.1021/cm3025445

    Article  Google Scholar 

  56. Akiyama, G., Matsuda, R., Kitagawa, S.: Highly porous and stable coordination polymers as water sorption materials. Chem. Lett. 39, 360–361 (2010). https://doi.org/10.1246/cl.2010.360

    Article  Google Scholar 

  57. Jeremias, F., Khutia, A., Henninger, S.K., Janiak, C.: MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J. Mater. Chem. 22, 10148–10151 (2012). https://doi.org/10.1039/c2jm15615f

    Article  Google Scholar 

  58. Wickenheisser, M., Jeremias, F., Henninger, S.K., Janiak, C.: Grafting of hydrophilic ethylene glycols or ethylenediamine on coordinatively unsaturated metal sites in MIL-100(Cr) for improved water adsorption characteristics. Inorg. Chim. Acta. 407, 145–152 (2013). https://doi.org/10.1016/j.ica.2013.07.024

    Article  Google Scholar 

  59. Ehrenmann, J., Henninger, S.K., Janiak, C.: Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs. Eur. J. Inorg. Chem. 2011, 471–474 (2011). https://doi.org/10.1002/ejic.201001156

    Article  Google Scholar 

  60. Akiyama, G., Matsuda, R., Sato, H., Hori, A., Takata, M., Kitagawa, S.: Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 157, 89–93 (2012). https://doi.org/10.1016/j.micromeso.2012.01.015

    Article  Google Scholar 

  61. Khutia, A., Rammelberg, H.U., Schmidt, T., Henninger, S., Janiak, C.: Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 25, 790–798 (2013). https://doi.org/10.1021/cm304055k

    Article  Google Scholar 

  62. Jeremias, F., Lozan, V., Henninger, S.K., Janiak, C.: Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalt. Trans. 42, 15967–15973 (2013). https://doi.org/10.1039/c3dt51471d

    Article  Google Scholar 

  63. Shigematsu, A., Yamada, T., Kitagawa, H.: Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011). https://doi.org/10.1021/ja109810w

    Article  Google Scholar 

  64. Wade, C.R., Corrales-Sanchez, T., Narayan, T.C., Dincǎ, M.: Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties. Energy Environ. Sci. 6, 2172–2177 (2013). https://doi.org/10.1039/c3ee40876k

    Article  Google Scholar 

  65. Liu, J., Wang, Y., Benin, A.I., Jakubczak, P., Willis, R.R., LeVan, M.D.: CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 26, 14301–14307 (2010). https://doi.org/10.1021/la102359q

    Article  Google Scholar 

  66. Schoenecker, P.M., Carson, C.G., Jasuja, H., Flemming, C.J.J., Walton, K.S.: Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 51, 6513–6519 (2012). https://doi.org/10.1021/ie202325p

    Article  Google Scholar 

  67. Cmarik, G.E., Kim, M., Cohen, S.M., Walton, K.S.: Tuning the adsorption properties of uio-66 via ligand functionalization. Langmuir 28, 15606–15613 (2012). https://doi.org/10.1021/la3035352

    Article  Google Scholar 

  68. Elsayed, E., Al-Dadah, R., Mahmoud, S., Elsayed, A., Anderson, P.A.: Aluminium fumarate and CPO-27(Ni) MOFs: characterization and thermodynamic analysis for adsorption heat pump applications. Appl. Therm. Eng. 99, 802–812 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.129

    Article  Google Scholar 

  69. Al Dadah, R., Mahmoud, S., Elsayed, E., Youssef, P., Al-Mousawi, F.: Metal-organic framework materials for adsorption heat pumps. Energy 190, 116356 (2020). https://doi.org/10.1016/j.energy.2019.116356

    Article  Google Scholar 

  70. Mohammed, R.H., Rezk, A., Askalany, A., Ali, E.S., Zohir, A.E., Sultan, M., Ghazy, M., Abdelkareem, M.A., Olabi, A.G.: Metal-organic frameworks in cooling and water desalination: synthesis and application. Renew. Sustain. Energy Rev. 149, 111362 (2021). https://doi.org/10.1016/j.rser.2021.111362

    Article  Google Scholar 

  71. Elsayed, A., Elsayed, E., Al-Dadah, R., Mahmoud, S., Elshaer, A., Kaialy, W.: Thermal energy storage using metal–organic framework materials. Appl. Energy. 186, 509–519 (2017). https://doi.org/10.1016/j.apenergy.2016.03.113

    Article  Google Scholar 

  72. Shi, B.: Development of an Mof based adsorption air conditioning system for automotive. http://etheses.bham.ac.uk/id/eprint/6017 (2015)

  73. Youssef, P.G., Dakkama, H., Mahmoud, S.M., Al-Dadah, R.K.: Experimental investigation of adsorption water desalination/cooling system using CPO-27Ni MOF. Desalination 404, 192–199 (2017). https://doi.org/10.1016/j.desal.2016.11.008

    Article  Google Scholar 

  74. Dakkama, H.J., Youssef, P.G., Al-Dadah, R.K., Mahmoud, S.: Adsorption ice making and water desalination system using metal organic frameworks/water pair. Energy Convers. Manag. 142, 53–61 (2017). https://doi.org/10.1016/j.enconman.2017.03.036

    Article  Google Scholar 

  75. Rezk, A., Al-Dadah, R., Mahmoud, S., Elsayed, A.: Experimental investigation of metal organic frameworks characteristics for water adsorption chillers. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 227, 992–1005 (2013). https://doi.org/10.1177/0954406212456469

    Article  Google Scholar 

  76. Kummer, H., Füldner, G., Henninger, S.K.: Versatile siloxane based adsorbent coatings for fast water adsorption processes in thermally driven chillers and heat pumps. Appl. Therm. Eng. 85, 1–8 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.042

    Article  Google Scholar 

  77. Cheung, O., Hedin, N.: Zeolites and related sorbents with narrow pores for CO2 separation from flue gas. RSC Adv. 4, 14480–14494 (2014). https://doi.org/10.1039/c3ra48052f

    Article  Google Scholar 

  78. Elsayed, E., Wang, H., Anderson, P.A., Al-Dadah, R., Mahmoud, S., Navarro, H., Ding, Y., Bowen, J.: Development of MIL-101(Cr)/GrO composites for adsorption heat pump applications. Microporous Mesoporous Mater. 244, 180–191 (2017). https://doi.org/10.1016/j.micromeso.2017.02.020

    Article  Google Scholar 

  79. Jänchen, J., Ackermann, D., Stach, H., Brösicke, W.: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy. 76, 339–344 (2004). https://doi.org/10.1016/j.solener.2003.07.036

    Article  Google Scholar 

  80. Casey, S.P., Elvins, J., Riffat, S., Robinson, A.: Salt impregnated desiccant matrices for “open” thermochemical energy storage-selection, synthesis and characterisation of candidate materials. Energy Build. 84, 412–425 (2014). https://doi.org/10.1016/j.enbuild.2014.08.028

    Article  Google Scholar 

  81. Mrowiec-Białoń, J., Jarzȩbski, A.B., Lachowski, A.I., Malinowski, J.J., Aristov, Y.I.: Effective inorganic hybrid adsorbents of water vapor by the sol-gel method. Chem. Mater. 9, 2486–2490 (1997). https://doi.org/10.1021/cm9703280

    Article  Google Scholar 

  82. Wu, H., Wang, S., Zhu, D.: Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage. Sol. Energy. 81, 864–871 (2007). https://doi.org/10.1016/j.solener.2006.11.013

    Article  Google Scholar 

  83. Mrowiec-Bialoń, J., Lachowski, A.I., Jarzȩbski, A.B., Gordeeva, L.G., Aristov, Y.I.: SiO2-LiBr nanocomposite sol-gel adsorbents of water vapor: preparation and properties. J. Colloid Interface Sci. 218, 500–503 (1999). https://doi.org/10.1006/jcis.1999.6406

    Article  Google Scholar 

  84. Gordeeva, L.G., Glaznev, I.S., Malakhov, V.V., Aristov, Y.I.: Influence of calcium chloride interaction with silica surface on phase composition and sorption properties of dispersed salt. Russ. J. Phys. Chem. 77, 1843–1847 (2003)

    Google Scholar 

  85. Aristov, Y.I., Tokarev, M.M., Restuccia, G., Cacciola, G.: Selective water sorbents for multiple applications, 2 CaCl2 confined in micropores of silica gel: sorption properties. React. Kinet. Catal. Lett. 59, 335–342 (1996). https://doi.org/10.1007/BF02068131

    Article  Google Scholar 

  86. Simonova, I.A., Freni, A., Restuccia, G., Aristov, Y.I.: Water sorption on composite “silica modified by calcium nitrate.” Microporous Mesoporous Mater. 122, 223–228 (2009). https://doi.org/10.1016/j.micromeso.2009.02.034

    Article  Google Scholar 

  87. Aristov, Y.I., Sapienza, A., Ovoshchnikov, D.S., Freni, A., Restuccia, G.: Reallocation of adsorption and desorption times for optimisation of cooling cycles. Int. J. Refrig. 35, 525–531 (2012). https://doi.org/10.1016/j.ijrefrig.2010.07.019

    Article  Google Scholar 

  88. Tanashev, Y.Y., Krainov, A.V., Aristov, Y.I.: Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation. Appl. Therm. Eng. 61, 401–407 (2013). https://doi.org/10.1016/j.applthermaleng.2013.08.022

    Article  Google Scholar 

  89. Tokarev, M.M., Aristov, Y.I.: Selective water sorbents for multiple applications, 4 CaCl2 confined in silica gel pores: sorption/desorption kinetics. React. Kinet. Catal. Lett. 62, 143–150 (1997). https://doi.org/10.1007/BF02475725

    Article  Google Scholar 

  90. Gordeeva, L.G., Restuccia, G., Cacciola, G., Aristov, Y.I.: Selective water sorbents for multiple applications, 5 LiBr confined in mesopores of silica gel: sorption properties. React. Kinet. Catal. Lett. 63, 81–88 (1998). https://doi.org/10.1007/BF02475434

    Article  Google Scholar 

  91. Ristić, A., Logar, N.Z.: New composite water sorbents CaCl2-PHTS for low-temperature sorption heat storage: determination of structural properties. Nanomaterials 9, 27 (2019). https://doi.org/10.3390/nano9010027

    Article  Google Scholar 

  92. Ponomarenko, I.V., Glaznev, I.S., Gubar, A.V., Aristov, Y.I., Kirik, S.D.: Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores.” Microporous Mesoporous Mater. 129, 243–250 (2010). https://doi.org/10.1016/j.micromeso.2009.09.023

    Article  Google Scholar 

  93. Jabbari-Hichri, A., Bennici, S., Auroux, A.: Effect of aluminum sulfate addition on the thermal storage performance of mesoporous SBA-15 and MCM-41 materials. Sol. Energy Mater. Sol. Cells. 149, 232–241 (2016). https://doi.org/10.1016/j.solmat.2016.01.033

    Article  Google Scholar 

  94. Dong, H., Askalany, A.A., Olkis, C., Zhao, J., Santori, G.: Hydrothermal stability of water sorption ionogels. Energy 189, 116186 (2019). https://doi.org/10.1016/j.energy.2019.116186

    Article  Google Scholar 

  95. Askalany, A., Olkis, C., Bramanti, E., Lapshin, D., Calabrese, L., Proverbio, E., Freni, A., Santori, G.: Silica-supported ionic liquids for heat-powered sorption desalination. ACS Appl. Mater. Interfaces. 11, 36497–36505 (2019). https://doi.org/10.1021/acsami.9b07602

    Article  Google Scholar 

  96. Askalany, A.A., Freni, A., Santori, G.: Supported ionic liquid water sorbent for high throughput desalination and drying. Desalination 452, 258–264 (2019). https://doi.org/10.1016/j.desal.2018.11.002

    Article  Google Scholar 

  97. Gordeeva, L.G., Restuccia, G., Freni, A., Aristov, Y.I.: Water sorption on composites “LiBr in a porous carbon.” Fuel Process. Technol. 79(3), 225–231 (2002)

    Article  Google Scholar 

  98. Yu, Q., Zhao, H., Sun, S., Zhao, H., Li, G., Li, M., Wang, Y.: Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application. Renew. Energy. 138, 1087–1095 (2019). https://doi.org/10.1016/j.renene.2019.02.024

    Article  Google Scholar 

  99. Tso, C.Y., Chao, C.Y.H.: Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int. J. Refrig. 35, 1626–1638 (2012). https://doi.org/10.1016/j.ijrefrig.2012.05.007

    Article  Google Scholar 

  100. Huang, H., Oike, T., Watanabe, F., Osaka, Y., Kobayashi, N., Hasatani, M.: Development research on composite adsorbents applied in adsorption heat pump. Appl. Therm. Eng. 30, 1193–1198 (2010). https://doi.org/10.1016/j.applthermaleng.2010.01.036

    Article  Google Scholar 

  101. Grekova, A., Gordeeva, L., Aristov, Y.: Composite sorbents “li/Ca halogenides inside multi-wall carbon nano-tubes” for thermal energy storage. Sol. Energy Mater. Sol. Cells. 155, 176–183 (2016). https://doi.org/10.1016/j.solmat.2016.06.006

    Article  Google Scholar 

  102. Grekova, A.D., Gordeeva, L.G., Lu, Z., Wang, R., Aristov, Y.I.: Composite “LiCl/MWCNT” as advanced water sorbent for thermal energy storage: sorption dynamics. Sol. Energy Mater. Sol. Cells. 176, 273–279 (2018). https://doi.org/10.1016/j.solmat.2017.12.011

    Article  Google Scholar 

  103. Brancato, V., Gordeeva, L.G., Grekova, A.D., Sapienza, A., Vasta, S., Frazzica, A., Aristov, Y.I.: Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage. Sol. Energy Mater. Sol. Cells. 193, 133–140 (2019). https://doi.org/10.1016/j.solmat.2019.01.001

    Article  Google Scholar 

  104. Hongois, S., Kuznik, F., Stevens, P., Roux, J.J.: Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage. Sol. Energy Mater. Sol. Cells. 95, 1831–1837 (2011). https://doi.org/10.1016/j.solmat.2011.01.050

    Article  Google Scholar 

  105. Chan, K.C., Chao, C.Y.H., Sze-To, G.N., Hui, K.S.: Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems. Int. J. Heat Mass Transf. 55, 3214–3224 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.054

    Article  Google Scholar 

  106. Oh, H.T., Lim, S.J., Kim, J.H., Lee, C.H.: Adsorption equilibria of water vapor on an alumina/zeolite 13X composite and silica gel. J. Chem. Eng. Data. 62, 804–811 (2017). https://doi.org/10.1021/acs.jced.6b00850

    Article  Google Scholar 

  107. Teo, H.W.B., Chakraborty, A.: Water adsorption on various metal organic framework. IOP Conf. Ser. Mater. Sci. Eng. 272, 012019 (2017). https://doi.org/10.1088/1757-899X/272/1/012019

    Article  Google Scholar 

  108. Yan, J., Yu, Y., Ma, C., Xiao, J., Xia, Q., Li, Y., Li, Z.: Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl. Therm. Eng. 84, 118–125 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.040

    Article  Google Scholar 

  109. Elsayed, E., Anderson, P., Al-Dadah, R., Mahmoud, S., Elsayed, A.: MIL-101(Cr)/calcium chloride composites for enhanced adsorption cooling and water desalination. J. Solid State Chem. 277, 123–132 (2019). https://doi.org/10.1016/j.jssc.2019.05.026

    Article  Google Scholar 

  110. Liu, Z., Gao, W., Qi, X., Lou, F., Lang, H.: Experimental study on salt–metal organic framework composites for water absorption. Inorg. Chim. Acta. 500, 119214 (2020). https://doi.org/10.1016/j.ica.2019.119214

    Article  Google Scholar 

  111. Sapienza, A., Glaznev, I.S., Santamaria, S., Freni, A., Aristov, Y.I.: Adsorption chilling driven by low temperature heat: new adsorbent and cycle optimization. Appl. Therm. Eng. 32, 141–146 (2012). https://doi.org/10.1016/j.applthermaleng.2011.09.014

    Article  Google Scholar 

  112. Aristov, Y.I., Restuccia, G., Tokarev, M.M., Buerger, H.D.D., Freni, A.: Selective water sorbents for multiple applications. 11 CaCl2 confined to expanded vermiculite. React. Kinet. Catal. Lett. 71, 377–384 (2000). https://doi.org/10.1023/A:1010351815698

    Article  Google Scholar 

  113. Tokarev, M., Gordeeva, L., Romannikov, V., Glaznev, I., Aristov, Y.: New composite sorbent CaCl2 in mesopores for sorption cooling/heating. Int. J. Therm. Sci. 41, 470–474 (2002). https://doi.org/10.1016/S1290-0729(02)01339-X

    Article  Google Scholar 

  114. Liu, H., Nagano, K., Togawa, J.: A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system. Sol. Energy. 111, 186–200 (2015). https://doi.org/10.1016/j.solener.2014.10.044

    Article  Google Scholar 

  115. Liu, H., Nagano, K., Sugiyama, D., Togawa, J., Nakamura, M.: Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat. Int. J. Heat Mass Transf. 65, 471–480 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.021

    Article  Google Scholar 

  116. Nakabayashi, S., Nagano, K., Nakamura, M., Togawa, J., Kurokawa, A.: Improvement of water vapor adsorption ability of natural mesoporous material by impregnating with chloride salts for development of a new desiccant filter. Adsorption 17, 675–686 (2011). https://doi.org/10.1007/s10450-011-9363-1

    Article  Google Scholar 

  117. Alsaman, A.S., Ibrahim, E.M.M., Salem Ahmed, M., Ali, E.S., Farid, A.M., Askalany, A.A.: Experimental investigation of sodium polyacrylate-based innovative adsorbent material for higher desalination and cooling effects. Energy Convers. Manag. 266, 115818 (2022). https://doi.org/10.1016/j.enconman.2022.115818

    Article  Google Scholar 

  118. Thu, K., Ng, K.C., Saha, B.B., Chakraborty, A., Koyama, S.: Operational strategy of adsorption desalination systems. Int. J. Heat Mass Transf. 52, 1811–1816 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.012

    Article  Google Scholar 

  119. Wu, J.W., Biggs, M.J., Pendleton, P., Badalyan, A., Hu, E.J.: Experimental implementation and validation of thermodynamic cycles of adsorption-based desalination. Appl. Energy. 98, 190–197 (2012). https://doi.org/10.1016/j.apenergy.2012.03.022

    Article  Google Scholar 

  120. Ng, K.C., Thu, K., Saha, B.B., Chakraborty, A.: Study on a waste heat-driven adsorption cooling cum desalination cycle. Int. J. Refrig. 35, 685–693 (2012). https://doi.org/10.1016/j.ijrefrig.2011.01.008

    Article  Google Scholar 

  121. Mitra, S., Kumar, P., Srinivasan, K., Dutta, P.: Performance evaluation of a two-stage silica gel + water adsorption based cooling-cum-desalination system. Int. J. Refrig. 58, 186–198 (2015). https://doi.org/10.1016/j.ijrefrig.2015.06.018

    Article  Google Scholar 

  122. Gao, W., Li, C., Xu, C., Wang, D., Wu, D.: An experimental investigation of salt-water separation in the vacuum flashing assisted with heat pipes and solid adsorption. Desalination 399, 116–123 (2016). https://doi.org/10.1016/j.desal.2016.08.016

    Article  Google Scholar 

  123. Olkis, C., Brandani, S., Santori, G.: Cycle and performance analysis of a small-scale adsorption heat transformer for desalination and cooling applications. Chem. Eng. J. 378, 122104 (2019). https://doi.org/10.1016/j.cej.2019.122104

    Article  Google Scholar 

  124. Olkis, C., Brandani, S., Santori, G.: Design and experimental study of a small scale adsorption desalinator. Appl. Energy. 253, 113584 (2019). https://doi.org/10.1016/j.apenergy.2019.113584

    Article  Google Scholar 

  125. Olkis, C., Brandani, S., Santori, G.: A small-scale adsorption desalinator. Energy Procedia 158, 1425–1430 (2019). https://doi.org/10.1016/j.egypro.2019.01.345

    Article  Google Scholar 

  126. Olkis, C., Al-Hasni, S., Brandani, S., Vasta, S., Santori, G.: Solar powered adsorption desalination for Northern and Southern Europe. Energy 232, 120942 (2021). https://doi.org/10.1016/j.energy.2021.120942

    Article  Google Scholar 

  127. Elsayed, E., Al-Dadah, R., Mahmoud, S., Anderson, P., Elsayed, A.: Experimental testing of aluminium fumarate MOF for adsorption desalination. Desalination 475, 114170 (2020). https://doi.org/10.1016/j.desal.2019.114170

    Article  Google Scholar 

  128. Zhang, H., Ma, H., Liu, S., Wang, H., Sun, Y., Qi, D.: Investigation on the operating characteristics of a pilot-scale adsorption desalination system. Desalination 473, 114196 (2020). https://doi.org/10.1016/j.desal.2019.114196

    Article  Google Scholar 

  129. Kim, Y.D., Thu, K., Masry, M.E., Ng, K.C.: Water quality assessment of solar-assisted adsorption desalination cycle. Desalination 344, 144–151 (2014). https://doi.org/10.1016/j.desal.2014.03.021

    Article  Google Scholar 

  130. Shahzad, M.W., Thu, K., Kim, Y.D., Ng, K.C.: An experimental investigation on MEDAD hybrid desalination cycle. Appl. Energy. 148, 273–281 (2015). https://doi.org/10.1016/j.apenergy.2015.03.062

    Article  Google Scholar 

  131. Son, H.S., Shahzad, M.W., Ghaffour, N., Ng, K.C.: Pilot studies on synergetic impacts of energy utilization in hybrid desalination system: multi-effect distillation and adsorption cycle (MED-AD). Desalination 477, 114266 (2020). https://doi.org/10.1016/j.desal.2019.114266

    Article  Google Scholar 

  132. Askalany, A., Alsaman, A.S., Ghazy, M., Mohammed, R.H., Al-Dadah, R., Mahmoud, S.: Experimental optimization of the cycle time and switching time of a metal organic framework adsorption desalination cycle. Energy Convers. Manag. 245, 114558 (2021). https://doi.org/10.1016/j.enconman.2021.114558

    Article  Google Scholar 

  133. Ghazy, M., Ibrahim, E.M.M., Mohamed, A.S.A., Askalany, A.A.: Experimental investigation of hybrid photovoltaic solar thermal collector (PV/T)-adsorption desalination system in hot weather conditions. Energy 254, 124370 (2022). https://doi.org/10.1016/j.energy.2022.124370

    Article  Google Scholar 

  134. Albaik, I., Badawy Elsheniti, M., Al-Dadah, R., Mahmoud, S., Solmaz, İ: Numerical and experimental investigation of multiple heat exchanger modules in cooling and desalination adsorption system using metal organic framework. Energy Convers. Manag. 251, 114934 (2022). https://doi.org/10.1016/j.enconman.2021.114934

    Article  Google Scholar 

  135. Saleh, M.M., Elsayed, E., Al-Dadah, R., Mahmoud, S.: Experimental testing of wire finned heat exchanger coated with aluminium fumarate MOF material for adsorption desalination application. Therm. Sci. Eng. Prog. 28, 101050 (2022). https://doi.org/10.1016/j.tsep.2021.101050

    Article  Google Scholar 

Download references

Acknowledgements

This research is a part of a research project supported by the Academy of Scientific Research and Technology (ASRT) through call Egypt scientists -2. Call no. 2/2019/ASRT-Nexus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab S. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohir, A.E., Ali, E.S., Farid, A.M. et al. A state-of-the-art of experimentally studied adsorption water desalination systems. Int J Energy Environ Eng 14, 573–599 (2023). https://doi.org/10.1007/s40095-022-00536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00536-y

Keywords

Navigation