Skip to main content

Advertisement

Log in

Application of trigeneration system power by concentrating photovoltaic-thermal solar collectors for energy demands of an industrial complex

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The overall aim of this work is to assess the performance of high-efficiency solar trigeneration systems in order to fulfill an industrial complex heating and cooling demands. The system consists of a double-effect lithium bromide–water absorption chiller and concentrating photovoltaic-thermal solar collectors (CPVT). A 100 TR nominal capacity double-effect absorption chiller with a 1.3 coefficient of performance (COP) is used to provide cooling in the existing structure. Additionally, the CPVT unit incorporates linear Fresnel concentrators and triple-junction solar cells. The study site is located in Tehran, Iran. The system analyzation is conducted by employing TRNSYS for modeling simulation. Moreover, scenarios in which the CPVT is substituted by a photovoltaic-thermal collector (PVT) and concentrating thermal collector are examined. The results indicate that the system based on a PVT unit is incapable of delivering energy for the cooling cycle, and it only provides less than 0.5 MW/h energy for the heating cycle. The annual average thermal and electrical efficiency of the CPVT are 50 and 19%, respectively. Examination of the system energy production and demands shows 27 and 52% lower energy needed to meet the energy demand than that of a case with no solar unit. However, the system with CPVT has 68 and 25% more energy production than those with PVT and concentrating thermal collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Barbir, F., Veziroǧlu, T.N., Plass, H.J.: Environmental damage due to fossil fuels use. Int. J. Hydrogen Energy 15(10), 739–749 (1990). https://doi.org/10.1016/0360-3199(90)90005-J

    Article  Google Scholar 

  2. Braungardt, S., van den Bergh, J., Dunlop, T.: Fossil fuel divestment and climate change: Reviewing contested arguments. Energy Res. Soc. Sci. 50, 191–200 (2019). https://doi.org/10.1016/j.erss.2018.12.004

    Article  Google Scholar 

  3. Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  4. Eisenberg, R., Nocera, D.G.: Preface: Overview of the forum on solar and renewable energy. Inorg. Chem. 44(20), 6799–6801 (2005). https://doi.org/10.1021/ic058006i

    Article  Google Scholar 

  5. Belsky, A.A., Glukhanich, D.Y., Carrizosa, M.J., Starshaia, V.V.: Analysis of specifications of solar photovoltaic panels. Renew. Sustain. Energy Rev. 159, 112239 (2022). https://doi.org/10.1016/j.rser.2022.112239

    Article  Google Scholar 

  6. Preet, S.: A review on the outlook of thermal management of photovoltaic panel using phase change material. Energy and Climate Change 2, 100033 (2021). https://doi.org/10.1016/j.egycc.2021.100033

    Article  Google Scholar 

  7. Garg, H.P., Adhikari, R.S.: Chapter 225 - Studies on Cost Effectiveness of Hybrid Photovoltaic/Thermal (PV/T) Air Heating Collector. In: Sayigh, A.A.M. (ed.) World Renewable Energy Congress VI, pp. 1098–1101. Pergamon, Oxford (2000)

    Chapter  Google Scholar 

  8. Chaibi, Y., et al.: Air-based hybrid photovoltaic/thermal systems: A review. J. Clean. Prod. 295, 126211 (2021). https://doi.org/10.1016/j.jclepro.2021.126211

    Article  Google Scholar 

  9. Ding, Z., et al.: Simulation study on a novel solar aided combined heat and power system for heat-power decoupling. Energy 220, 119689 (2021). https://doi.org/10.1016/j.energy.2020.119689

    Article  Google Scholar 

  10. Fan, W., Kokogiannakis, G., Ma, Z.: Integrative modelling and optimisation of a desiccant cooling system coupled with a photovoltaic thermal-solar air heater. Sol. Energy 193, 929–947 (2019). https://doi.org/10.1016/j.solener.2019.10.030

    Article  Google Scholar 

  11. Anand, B., Shankar, R., Murugavelh, S., Rivera, W., Midhun Prasad, K., Nagarajan, R.: A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustain. Energy Rev. 141, 110787 (2021). https://doi.org/10.1016/j.rser.2021.110787

    Article  Google Scholar 

  12. Mi, P., Zhang, J., Han, Y., Guo, X.: Operation performance study and prediction of photovoltaic thermal heat pump system engineering in winter. Appl. Energy 306, 118071 (2022). https://doi.org/10.1016/j.apenergy.2021.118071

    Article  Google Scholar 

  13. Kasaeian, A.B., Akhlaghi, M.M., Golzari, S., Dehghani, M.: Modeling and optimization of an air-cooled photovoltaic thermal (PV/T) system using genetic algorithms. Appl. Solar Energy 49(4), 215–224 (2013). https://doi.org/10.3103/S0003701X1304004X

    Article  Google Scholar 

  14. Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R.: A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sustain. Energy Rev. 91, 987–1018 (2018). https://doi.org/10.1016/j.rser.2018.04.097

    Article  Google Scholar 

  15. Kong, X., et al.: Performance comparative study of a concentrating photovoltaic/thermal phase change system with different heatsinks. Appl. Therm. Eng. 208, 118223 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118223

    Article  Google Scholar 

  16. Mittelman, G., Kribus, A., Dayan, A.: Solar cooling with concentrating photovoltaic/thermal (CPVT) systems. Energy Convers. Manage. 48(9), 2481–2490 (2007). https://doi.org/10.1016/j.enconman.2007.04.004

    Article  Google Scholar 

  17. Khouya, A.: Performance analysis and optimization of a trilateral organic Rankine powered by a concentrated photovoltaic thermal system. Energy 247, 123439 (2022). https://doi.org/10.1016/j.energy.2022.123439

    Article  Google Scholar 

  18. Chandan, Baig, H., Ali Tahir, A., Reddy, K. S., Mallick, T. K., Pesala, B.: Performance improvement of a desiccant based cooling system by mitigation of non-uniform illumination on the coupled low concentrating photovoltaic thermal units. Energy Convers. Manag. 257, 115438, (2022). https://doi.org/10.1016/j.enconman.2022.115438

  19. Shoeibi, S., Kargarsharifabad, H., Mirjalily, S.A.A., Zargarazad, M.: Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator. Appl. Energy 304, 117778 (2021). https://doi.org/10.1016/j.apenergy.2021.117778

    Article  Google Scholar 

  20. Liu, Y., Zhang, H., Chen, H.: Experimental study of an indirect-expansion heat pump system based on solar low-concentrating photovoltaic/thermal collectors. Renew. Energy 157, 718–730 (2020). https://doi.org/10.1016/j.renene.2020.05.090

    Article  Google Scholar 

  21. Sharaf, O.Z., Orhan, M.F.: Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions. Renew. Sustain. Energy Rev. 50, 1566–1633 (2015). https://doi.org/10.1016/j.rser.2014.07.215

    Article  Google Scholar 

  22. Sharma, D., Mehra, R., Raj, B.: Comparative analysis of photovoltaic technologies for high efficiency solar cell design. Superlattices Microstruct. 153, 106861 (2021). https://doi.org/10.1016/j.spmi.2021.106861

    Article  Google Scholar 

  23. Du, B., Yang, R., He, Y., Wang, F., Huang, S.: Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview. Renew. Sustain. Energy Rev. 78, 1117–1151 (2017). https://doi.org/10.1016/j.rser.2017.05.017

    Article  Google Scholar 

  24. Nelson, D.T., Evans, D.L., Bansal, R.K.: Linear Fresnel lens concentrators. Sol. Energy 17(5), 285–289 (1975). https://doi.org/10.1016/0038-092X(75)90045-6

    Article  Google Scholar 

  25. Mills, D.R., Morrison, G.L.: Compact Linear Fresnel Reflector solar thermal powerplants. Sol. Energy 68(3), 263–283 (2000). https://doi.org/10.1016/S0038-092X(99)00068-7

    Article  Google Scholar 

  26. Jebasingh, V.K., Herbert, G.M.J.: A review of solar parabolic trough collector. Renew. Sustain. Energy Rev. 54, 1085–1091 (2016). https://doi.org/10.1016/j.rser.2015.10.043

    Article  Google Scholar 

  27. García-Segura, A., et al.: Degradation types of reflector materials used in concentrating solar thermal systems. Renew. Sustain. Energy Rev. 143, 110879 (2021). https://doi.org/10.1016/j.rser.2021.110879

    Article  Google Scholar 

  28. Souza, L.FLd., Fraidenraich, N., Tiba, C., Gordon, J.M.: Linear aplanatic Fresnel reflector for practical high-performance solar concentration. Solar Energy 222, 259–268 (2021). https://doi.org/10.1016/j.solener.2021.05.002

    Article  Google Scholar 

  29. Hu, P., Zhang, Q., Liu, Y., Sheng, C., Cheng, X., Chen, Z.: Optical analysis of a hybrid solar concentrating photovoltaic/thermal (CPV/T) system with beam splitting technique. Sci. China Technol. Sci. 56(6), 1387–1394 (2013). https://doi.org/10.1007/s11431-013-5209-2

    Article  Google Scholar 

  30. Mittelman, G., Kribus, A., Mouchtar, O., Dayan, A.: Water desalination with concentrating photovoltaic/thermal (CPVT) systems. Sol. Energy 83(8), 1322–1334 (2009). https://doi.org/10.1016/j.solener.2009.04.003

    Article  Google Scholar 

  31. Petrucci, L., Boccaletti, C., Francois. B., and Felice, P.D: Hybrid trigeneration system management with a double DC-bus configuration on the electrical side. In: 2009 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, 1–3 July 2009 pp. 1–6. https://doi.org/10.1109/ELECTROMOTION.2009.5259118

  32. Calise, F., d’Accadia, M.D., Vanoli, L.: Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT). Energy Convers. Manage. 60, 214–225 (2012). https://doi.org/10.1016/j.enconman.2012.01.025

    Article  Google Scholar 

  33. Buonomano, A., Calise, F., Palombo, A.: Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model. Appl. Energy 103, 588–606 (2013). https://doi.org/10.1016/j.apenergy.2012.10.023

    Article  Google Scholar 

  34. Calise, F., Dentice d’Accadia, M., Roselli, C., Sasso, M., Tariello, F.: Desiccant-based AHU interacting with a CPVT collector: Simulation of energy and environmental performance. Solar Energy 103, 574–594 (2014). https://doi.org/10.1016/j.solener.2013.11.001

    Article  Google Scholar 

  35. Noorpoor, A., Heidararabi, S.: Exergoeconomic assessment, parametric study and optimization of a novel solar trigeneration system. Int. J. Renew. Energy Res. (IJRER) 6(3), 795–816 (2016)

    Google Scholar 

  36. Deb, S.K., Sarma, B.C.: Trigeneration Solar Thermal System. Procedia Computer Science 111, 427–434 (2017). https://doi.org/10.1016/j.procs.2017.06.044

    Article  Google Scholar 

  37. Moaleman, A., Kasaeian, A., Aramesh, M., Mahian, O., Sahota, L., Nath Tiwari, G.: Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system. Energy Convers. Manag. 160, 191–208 (2018). https://doi.org/10.1016/j.enconman.2017.12.057

    Article  Google Scholar 

  38. Anand, B., and Murugavelh, S.:Techno-economic analysis of solar trigeneration system. IOP Publishing, 1 ed., 312:012030 (2019)

  39. Karathanassis, I.K., Papanicolaou, E., Belessiotis, V., Bergeles, G.C.: Dynamic simulation and exergetic optimization of a Concentrating Photovoltaic/ Thermal (CPVT) system. Renew. Energy 135, 1035–1047 (2019). https://doi.org/10.1016/j.renene.2018.12.085

    Article  Google Scholar 

  40. Chen, H., Li, Z., Xu, Y.: Assessment and parametric analysis of solar trigeneration system integrating photovoltaic thermal collectors with thermal energy storage under time-of-use electricity pricing. Sol. Energy 206, 875–899 (2020). https://doi.org/10.1016/j.solener.2020.06.046

    Article  Google Scholar 

  41. Calise, F., Cappiello, F.L., Dentice d’Accadia, M., Vicidomini, M.: Thermo-economic optimization of a novel hybrid renewable trigeneration plant. Renew. Energy 175, 532–549 (2021). https://doi.org/10.1016/j.renene.2021.04.069

    Article  Google Scholar 

  42. Ju, X., et al.: A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Sci. Bull 62(20), 1388–1426 (2017). https://doi.org/10.1016/j.scib.2017.10.002

    Article  Google Scholar 

  43. Meneses Rodrı́guez, D., Horley, P.P., González-Hernández, J., Vorobiev, Y.V., Gorley, P.N.: Photovoltaic solar cells performance at elevated temperatures. Solar Energy 78(2), 243–250 (2005). https://doi.org/10.1016/j.solener.2004.05.016

    Article  Google Scholar 

  44. Grena, R., Tarquini, P.: solar linear fresnel collector using molten nitrates as heat transfer fluid. Energy 36(2), 1048–1056 (2011). https://doi.org/10.1016/j.energy.2010.12.003

    Article  Google Scholar 

  45. Helmers, H., Schachtner, M., Bett, A.W.: Influence of temperature and irradiance on triple-junction solar subcells. Sol. Energy Mater. Sol. Cells 116, 144–152 (2013). https://doi.org/10.1016/j.solmat.2013.03.039

    Article  Google Scholar 

  46. Baneshi, M., Maruyama, S.: The impacts of applying typical and aesthetically–thermally optimized TiO2 pigmented coatings on cooling and heating load demands of a typical residential building in various climates of Iran. Energy and Buildings 113, 99–111 (2016). https://doi.org/10.1016/j.enbuild.2015.12.028

    Article  Google Scholar 

  47. Khodakarami, J., Knight, I., Nasrollahi, N.: Reducing the demands of heating and cooling in Iranian hospitals. Renew. Energy 34(4), 1162–1168 (2009). https://doi.org/10.1016/j.renene.2008.06.023

    Article  Google Scholar 

  48. Labat, M., Attonaty, K.: Numerical estimation and sensitivity analysis of the energy demand for six industrial buildings in France. J. Build. Perform. Simul. 11(2), 223–240 (2018). https://doi.org/10.1080/19401493.2017.1322637

    Article  Google Scholar 

  49. P. G. Ellis, P. A. Torcellini, and D. B. Crawley, Energy Design Plugin: An EnergyPlus Plugin for SketchUp; Preprint (Conference: Presented at IBPSA-USA SimBuild 2008 Conference, July 30th - August 1st 2008, Berkeley, California). ; National Renewable Energy Lab. (NREL), Golden, CO (United States), 2008, p. Medium: ED; Size: 11 pp

  50. Katunsky, D., Korjenic, A., Katunska, J., Lopusniak, M., Korjenic, S., Doroudiani, S.: Analysis of thermal energy demand and saving in industrial buildings: A case study in Slovakia. Build. Environ. 67, 138–146 (2013). https://doi.org/10.1016/j.buildenv.2013.05.014

    Article  Google Scholar 

  51. Chahartaghi, M., Golmohammadi, H., Shojaei, A.F.: Performance analysis and optimization of new double effect lithium bromide–water absorption chiller with series and parallel flows. Int. J. Refrig 97, 73–87 (2019). https://doi.org/10.1016/j.ijrefrig.2018.08.011

    Article  Google Scholar 

  52. Jamar, A., Majid, Z.A.A., Azmi, W.H., Norhafana, M., Razak, A.A.: A review of water heating system for solar energy applications. Int. Commun. Heat Mass Transfer 76, 178–187 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028

    Article  Google Scholar 

  53. de Sá, A.B., Pigozzo Filho, V.C., Tadrist, L., Passos, J.C.: Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review. Renew. Sustain. Energy Rev. 90, 910–936 (2018). https://doi.org/10.1016/j.rser.2018.03.075

    Article  Google Scholar 

  54. Manohar, H.J., Saravanan, R., Renganarayanan, S.: Modelling of steam fired double effect vapour absorption chiller using neural network. Energy Convers. Manage. 47(15), 2202–2210 (2006). https://doi.org/10.1016/j.enconman.2005.12.003

    Article  Google Scholar 

  55. Avanessian, T., Ameri, M.: Energy, exergy, and economic analysis of single and double effect LiBr–H2O absorption chillers. Energy and Buildings 73, 26–36 (2014). https://doi.org/10.1016/j.enbuild.2014.01.013

    Article  Google Scholar 

  56. Dahash, A., Ochs, F., Janetti, M.B., Streicher, W.: Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems. Appl. Energy 239, 296–315 (2019). https://doi.org/10.1016/j.apenergy.2019.01.189

    Article  Google Scholar 

  57. Cengel, Y.A., Boles, M.A., Kanoğlu, M.: Thermodynamics: an engineering approach. McGraw-hill, New York (2011)

    Google Scholar 

  58. Borujeni, M.S., Ofetotse, E.L., Nebel, J.-C.: A solar backup system to provide reliable energy in presence of unplanned power outages. Journal of Energy Storage 47, 103653 (2022). https://doi.org/10.1016/j.est.2021.103653

    Article  Google Scholar 

  59. Marc, O., Lucas, F., Sinama, F., Monceyron, E.: Experimental investigation of a solar cooling absorption system operating without any backup system under tropical climate. Energy and Buildings 42(6), 774–782 (2010). https://doi.org/10.1016/j.enbuild.2009.12.006

    Article  Google Scholar 

  60. Bonaros, V., Gelegenis, J., Harris, D., Giannakidis, G. and Zervas, K.: ANALYSIS OF THE ENERGY AND COST SAVINGS CAUSED BY USING CONDENSING BOILERS FOR HEATING DWELLINGS IN GREECE. (2013)

  61. Jayamaha, L.: Energy-Efficient Building Systems: Green Strategies for Operation and Maintenance: Green Strategies for Operation and Maintenance. McGraw Hill Professional, New york (2006)

    Google Scholar 

  62. Eriksen, V.L.: Heat recovery steam generator technology. Woodhead Publishing, UK (2017)

    Google Scholar 

  63. Sun, J., Liu, Q., Duan, Y.: Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems. Geothermics 75, 249–258 (2018). https://doi.org/10.1016/j.geothermics.2018.06.001

    Article  Google Scholar 

  64. WM. University of, L. Solar Energy, and S. A. Klein, TRNSYS, a transient system simulation program. Madison, Wis.: Solar Energy Laborataory, University of Wisconsin--Madison (in English), 1979

  65. Bellos, E., Tzivanidis, C.: Development of analytical expressions for the incident angle modifiers of a linear Fresnel reflector. Solar Energy 173, 769–779 (2018). https://doi.org/10.1016/j.solener.2018.08.019

    Article  Google Scholar 

  66. del Amo Sancho, A.: Solar trigeneration: A transitory simulation of HVAC systems using different typologies of hybrid panels. J. Sustain. Dev. Energy, Water Environ. Syst. 2(1), 1–14 (2014)

    Article  Google Scholar 

  67. Dokhaee, E., Saraei, A., Jafari Mehrabadi, S., et al.: Simulation of the Allam cycle with carbon dioxide working fluid and comparison with Brayton cycle. Int. J. Energy Environ. Eng. 12, 543–550 (2021). https://doi.org/10.1007/s40095-021-00401-4

    Article  Google Scholar 

  68. Nazarzadehfard, A., Saraei, A., Jafari Mehrabadi, S., et al.: Exergy and thermoeconomic analysis of the combined MED desalination system and the Allam power generation system. Int. J. Energy Environ. Eng. 12, 679–687 (2021). https://doi.org/10.1007/s40095-021-00409-w

    Article  Google Scholar 

  69. Ahmadi, A., Noorpoor, A.R., Kani, A.R., Saraei, A.: Modeling and economic analysis of MED-TVC desalination with allam power plant cycle in Kish Island Iran. J Chem Chem Eng (2021). https://doi.org/10.30492/IJCCE.2020.117914.3851

    Article  Google Scholar 

  70. Iranfar, A., Saraei, A.: Numerical study of nanoencapsulated phase change material inside double pipe heat exchanger. Heat Transf. Asian Res. 48(8), 3466–3476 (2019). https://doi.org/10.1002/htj.21549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Saraei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khademy, M., Saraei, A. & Abyaneh, M.H.J. Application of trigeneration system power by concentrating photovoltaic-thermal solar collectors for energy demands of an industrial complex. Int J Energy Environ Eng 13, 1101–1128 (2022). https://doi.org/10.1007/s40095-022-00512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00512-6

Keywords

Navigation