Skip to main content

Advertisement

Log in

Estimation of wind energy potential and comparison of six Weibull parameters estimation methods for two potential locations in Nepal

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

This study analyzes the wind speed characteristics, compares the six different methods (graphical, method of moment, wind energy pattern factor, empirical method of Justus and Lysen, and maximum likelihood method) of estimating Weibull parameters and calculates wind power density using daily mean wind speed data collected, at a height of 2 m, over a period of seven and eight years for Jumla and Okhaldhunga, respectively. Wind data were estimated at a height of 50 m to calculate average wind speed, Weibull parameters, and wind power density. Based on the results, Jumla has an average monthly maximum wind speed of 9.78 m/s in June and minimum wind speed of 6.71 m/s in December, whereas Okhaldhunga has an average monthly maximum wind speed of 10.95 m/s in April and minimum wind speed of 4.52 m/s in October. Jumla has an average annual wind speed of 8.11 m/s while Okhaldhunga has an average annual wind speed of 6.89 m/s. The accuracy of estimation methods was statistically tested using root mean square error and coefficient of determination. The empirical method of Justus and Lysen was found to be the best performing while the graphical method performed the poorest. By using the best method, an average wind power density has been estimated as 336.07 W/m\(^2\) and 326.73 W/m\(^2\) for Jumla and Okhaldhunga, respectively, indicating that both locations belong to wind power class III and have a moderate potential for wind energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ritchie, H., Roser, M.: Energy. Our World in Data. Https://ourworldindata.org/energy (2020)

  2. IEA, Global Energy Review 2021. Tech. rep., Paris (2021). https://www.iea.org/reports/global-energy-review-2021 (2021)

  3. International Renewable Energy Agency (IRENA), Renewable Energy Capacity Statistics 2021. Tech. rep., Abu Dhabi (2021)

  4. Global Wind Energy Council (GWEC), Global Wind Report 2021. Tech. rep., Brussels (2021). https://gwec.net/global-wind-report-2021/

  5. Parajuli, A.: A statistical analysis of wind speed and power density based on Weibull and Rayleigh models of Jumla, Nepal. Energy Power Eng. 8(7), 271 (2016)

    Article  Google Scholar 

  6. Fyrippis, I., Axaopoulos, P.J., Panayiotou, G.: Wind energy potential assessment in Naxos Island, Greece. Appl. Energy 87(2), 577 (2010)

    Article  Google Scholar 

  7. Bidaoui, H., El Abbassi, I., El Bouardi, A., Darcherif, A.: Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco. Proc. Manuf. 32, 786 (2019)

    Google Scholar 

  8. Hoxha, B., Selimaj, R., Osmanaj, S.: An experimental study of Weibull and Rayleigh distribution functions of wind speeds in Kosovo. L TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 16(5), 2451 (2018)

    Article  Google Scholar 

  9. Ucar, A., Balo, F.: An investigation of wind turbine characteristics and the wind potential assessment of Ankara, Turkey. Energy Sour., Part A: Recovery, Utilization, Environ. Eff. 33(13), 1291 (2011)

    Article  Google Scholar 

  10. Arefi, F., Moshtagh, J., Moradi, M.: The wind energy potential of Kurdistan, Iran. Int. Sch. Res. Not. 2014, 9 (2014)

    Google Scholar 

  11. Soulouknga, M., Doka, S., Revanna, N., Djongyang, N., Kofane, T.: Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renew. Energy 121, 1 (2018)

    Article  Google Scholar 

  12. Ucar, A., Balo, F.: Investigation of wind energy potential in Kartalkaya-Bolu, Turkey. Int. J. Green Energy 6, 401 (2009). https://doi.org/10.1080/15435070903107098

    Article  Google Scholar 

  13. Chang, T.P.: Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Appl. Energy 88(1), 272 (2011)

    Article  Google Scholar 

  14. Rocha, P.A.C., de Sousa, R.C., de Andrade, C.F., da Silva, M.E.V.: Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Appl. Energy 89(1), 395 (2012)

    Article  Google Scholar 

  15. Ahmed, S.A.: Comparative study of four methods for estimating Weibull parameters for Halabja, Iraq. Int. J. Phys. Sci. 8(5), 186 (2013)

    Google Scholar 

  16. Werapun, W., Tirawanichakul, Y., Waewsak, J.: Comparative study of five methods to estimate Weibull parameters for wind speed on Phangan Island, Thailand. Energy Proc. 79, 976 (2015)

    Article  Google Scholar 

  17. Shaban, A.H., Resen, A.K., Bassil, N.: Weibull parameters evaluation by different methods for windmills farms. Energy Rep. 6, 188 (2020)

    Article  Google Scholar 

  18. Ben, U.C., Akpan, A.E., Mbonu, C.C., Ufuafuonye, C.H.: Integrated technical analysis of wind speed data for wind energy potential assessment in parts of southern and central Nigeria. Clean. Eng. Technol. 2, 100049 (2021)

    Article  Google Scholar 

  19. IRENA, Future of Wind: Renewable Power Generation Costs in 2020. Deployment, investment, technology, grid integration and socio-economic aspects. Tech. rep., Abu Dhabi (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf

  20. IRENA, Renewable Power Generation Costs in 2020. Tech. rep., Abu Dhabi (2021). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf

  21. Nepal’s largest wind–solar hybrid power system switched on to connect a small village to the world. https://www.adb.org/news/nepals-largest-wind-solar-hybrid-power-system-switched-connect-small-village-world#:~:text=KATHMANDU (2017). Accessed May 3, 2021

  22. Dhakal, R., Yadav, B.K., Koirala, N., Kumal, B.B., Moussa, H.: Feasibility study of distributed wind energy generation in Jumla Nepal. Int. J. Renew. Energy Res. 10(3), 1501 (2020)

    Google Scholar 

  23. Rahman, S.M., Chattopadhyay, H.: Statistical assessment of wind energy potential for power generation at Imphal, Manipur (India). Energy Sour., Part A: Recovery Utilization, Environ. Eff. (2019). https://doi.org/10.1080/15567036.2019.1675814

    Article  Google Scholar 

  24. Prescott, R., Van Kooten, G.C.: Economic costs of managing of an electricity grid with increasing wind power penetration. Clim. Policy 9(2), 155 (2009)

    Article  Google Scholar 

  25. Azad, A.K., Rasul, M.G., Yusaf, T.: Statistical diagnosis of the best Weibull methods for wind power assessment for agricultural applications. Energies 7(5), 3056 (2014)

    Article  Google Scholar 

  26. Justus, C., Hargraves, W., Mikhail, A., Graber, D.: Methods for estimating wind speed frequency distributions. J. Appl. Meteorol. 17(3), 350 (1978)

    Article  Google Scholar 

  27. Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., Jalilvand, M.: Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Convers. Manag. 108, 322 (2016)

    Article  Google Scholar 

  28. Akdağ, S.A., Dinler, A.: A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 50(7), 1761 (2009)

    Article  Google Scholar 

  29. Kaoga, D.K., Raidandi, D., Djongyang, N., Doka, S.Y.: Comparison of five numerical methods for estimating Weibull parameters for wind energy applications in the district of Kousseri, Cameroon. Asian J. Nat. Appl. Sci. 3(1), 73–88 (2014)

    Google Scholar 

  30. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679 (2006)

    Article  Google Scholar 

  31. Zhang, M.H.: Wind resource assessment and micro-siting: science and engineering. Wiley, Hoboken (2015)

  32. Ulazia, A., Sáenz, J., Ibarra-Berastegi, G., González-Rojí, S.J., Carreno-Madinabeitia, S.: Global estimations of wind energy potential considering seasonal air density changes. Energy 187, 115938 (2019)

    Article  Google Scholar 

  33. Rehman, S., Ahmad, A.: Assessment of wind energy potential for coastal locations of the Kingdom of Saudi Arabia. Energy 29(8), 1105 (2004)

    Article  Google Scholar 

  34. Teyabeen, A.A., Akkari, F.R., Jwaid, A.E.: Comparison of seven numerical methods for estimating Weibull parameters for wind energy applications. In: 2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim) (IEEE), pp. 173–178 (2017)

  35. Boopathi, K., Kushwaha, R., Balaraman, K., Bastin, J., Kanagavel, P., Prasad, D.R.: Assessment of wind power potential in the coastal region of Tamil Nadu, India. Ocean Eng. 219, 108356 (2021)

    Article  Google Scholar 

  36. Hayter, S.J., Kandt, A.: Renewable energy applications for existing buildings. Tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibek Pandeya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandeya, B., Prajapati, B., Khanal, A. et al. Estimation of wind energy potential and comparison of six Weibull parameters estimation methods for two potential locations in Nepal. Int J Energy Environ Eng 13, 955–966 (2022). https://doi.org/10.1007/s40095-021-00444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00444-7

Keywords

Navigation