Skip to main content
Log in

A Correction to this article was published on 27 September 2022

This article has been updated

Abstract

Completing the analysis in Scarpa (Math Models Methods Appl Sci 30(5): 991–1031 2020), we investigate the well-posedness of SPDEs problems of doubly nonlinear type. These arise ubiquitously in the modeling of dissipative media and correspond to generalized balance laws between conservative and nonconservative dynamics. We extend the reach of the classical deterministic case by allowing for stochasticity. The existence of martingale solutions is proved via a regularization technique, hinging on the validity of an Itô formula in a minimal regularity setting. Under additional assumptions, the well-posedness of stochastically strong solutions is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Change history

References

  1. Aizicovici, S., Yan, Q.: Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J. 7, 1–17 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Akagi, G.: Doubly nonlinear evolution equations with non-monotone perturbations in reflexive Banach spaces. J. Evol. Equ. 11(1), 1–41 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Akagi, G.: Global attractors for doubly nonlinear evolution equations with non-monotone perturbations. J. Differ. Equ. 250, 1850–1875 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Akagi, G., Stefanelli, U.: Weighted energy-dissipation functionals for doubly nonlinear evolution. J. Funct. Anal. 260, 2541–2578 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Akagi, G., Stefanelli, U.: A variational principle for doubly nonlinear evolution. Appl. Math. Lett. 23, 1120–1124 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  7. Arai, T.: On the existence of the solution for \(\partial \varphi (u^{\prime } (t))+\partial \psi (u(t))\ni f(t)\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(1), 75–96 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Barbu, V.: Existence theorems for a class of two point boundary problems. J. Differ. Equ. 17, 236–257 (1975)

    MathSciNet  MATH  Google Scholar 

  9. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010)

    MATH  Google Scholar 

  10. Barbu, V., Bonaccorsi, S., Tubaro, L.: Existence and asymptotic behavior for hereditary stochastic evolution equations. Appl. Math. Optim. 69, 273–314 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Barbu, V., Da Prato, G.: The two phase stochastic Stefan problem. Probab. Theory Related Fields. 124, 544–560 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37, 428–452 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Colli, P.: On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math. 9(2), 181–203 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Colli, P., Visintin, A.: On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Equ. 15(5), 737–756 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2014)

  16. DiBenedetto, E., Showalter, R.E.: Implicit degenerate evolution equations and applications. SIAM J. Math. Anal. 12(5), 731–751 (1981)

    MathSciNet  MATH  Google Scholar 

  17. Edwards, R. E.: Functional analysis. Theory and applications. Holt, Rinehart and Winston, New York (1965)

  18. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Related Fields 102(3), 367–391 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Germain, P.: Cours de mécanique des milieux continus. Masson et Cie, Éditeurs, Paris, (1973). Tome I: Théorie générale

  20. Gess, B.: Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263, 2355–2383 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105(2), 143–158 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Halpen, B., Nguyen, Q.S.: Sur les matériaux standard généralisés. J. Mécanique 14, 39–63 (1975)

    MathSciNet  Google Scholar 

  23. Han, W., Reddy, B.D.: Plasticity. Mathematical Theory and Numerical Analysis. Springer, New York (1999)

    MATH  Google Scholar 

  24. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition (1989)

  25. Keller-Ressel, M., Müller, M.S.: A Stefan-type stochastic moving boundary problem. Stoch. Partial Differ. Equ. Anal. Comput. 4, 746–790 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Krylov, N. V., Rozovskiĭ, B. L.: Stochastic evolution equations, In: Current Problems in Mathematics, vol. 14, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, (1979), pp. 71–147, 256 (in Russian)

  27. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Cham (2015)

    MATH  Google Scholar 

  28. Marinelli, C., Scarpa, L.: Refined existence and regularity results for a class of semilinear dissipative SPDEs. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23(2), 2050014 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Marinelli, C., Scarpa, L.: Strong solutions to SPDEs with monotone drift in divergence form. Stoch. Partial Differ. Equ. Anal. Comput. 6, 364–396 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Marinelli, C., Scarpa, L.: A variational approach to dissipative SPDEs with singular drift. Ann. Probab. 46, 1455–1497 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Marinelli, C., Scarpa, L.: Ergodicity and Kolmogorov equations for dissipative spdes with singular drift: a variational approach. Potential Anal. 52(1), 69–103 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Marinelli, C., Scarpa, L.: A note on doubly nonlinear SPDEs with singular drift in divergence form. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29, 619–633 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Moreau, J.-J.: Sur les lois de frottement, de viscosité et plasticité. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 271, 608–611 (1970)

    Google Scholar 

  34. Moreau, J.-J.: Sur l’évolution d’un système élasto-visco-plastique. C. R. Acad. Sci. Paris Sér. A-B 273, A118–A121 (1971)

  35. Mielke, A., Roubíček, T.: Rate-Independent Systems–Theory and Application, Appl. Math. Sci. Series, vol. 193. Springer, New York (2015)

  36. Orrieri, C., Scarpa, L.: Singular stochastic Allen-Cahn equations with dynamic boundary conditions. J. Differ. Equ. 266, 4624–4667 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Pardoux, E.: Equations aux derivées partielles stochastiques nonlinéaires monotones. PhD thesis, Université Paris XI (1975)

  38. Pardoux, É.: Sur des équations aux dérivés partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275, A101–A103 (1972)

    Google Scholar 

  39. Prévôt, C., Röckner, M.: A concise course on stochastic partial differential equations. Lecture Notes in Mathematics, 1905. Springer, Berlin (2007)

  40. Roubíček, T.: Nonlinear partial differential equations with applications. International Series of Numerical Mathematics, Vol. 153. Birkhäuser Verlag, Basel (2005)

  41. Sapountzoglou, N., Wittbold, P., Zimmermann, A.: On a doubly nonlinear PDE with stochastic perturbation. Stoch. Partial Differ. Equ. Anal. Comput. 7(2), 297–330 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Scarpa, L.: Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type. J. Differ. Equ. 263, 2113–2156 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Scarpa, L.: On the stochastic Cahn-Hilliard equation with a singular double-well potential. Nonlinear Anal. 171, 102–133 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Scarpa, L., Stefanelli, U.: Doubly nonlinear stochastic evolution equations. Math. Models Methods Appl. Sci. 30(5), 991–1031 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Scarpa, L., Stefanelli, U.: Stochastic PDEs via convex minimization. Commun. Partial Differ. Equ. 46(1), 66–97 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Schimperna, G., Segatti, A., Stefanelli, U.: Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst. 18, 15–38 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Segatti, A.: Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete Contin. Dyn. Syst. 14, 801–820 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Senba, T.: On some nonlinear evolution equation. Funkcial. Ekval. 29, 243–257 (1986)

    MathSciNet  MATH  Google Scholar 

  49. Scarpa, L.: The stochastic Cahn-Hilliard equation with degenerate mobility and logarithmic potential. Nonlinearity 34(6), 3813–3857 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)

    MATH  Google Scholar 

  51. Stefanelli, U.: The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control. Optim. 47, 1615–1642 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Vallet, G., Zimmermann, A.: Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19(1), 153–202 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Visintin, A.: Models of phase transitions. Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, Inc., Boston, MA (1996)

Download references

Acknowledgements

LS was funded by the Austrian Science Fund (FWF) through the Lise-Meitner project M 2876. US is partially supported by the Austrian Science Fund (FWF) through projects F 65, I 4354, P 32788, W 1245, I 5149 and by the OeAD-WTZ project CZ 01/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulisse Stefanelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarpa, L., Stefanelli, U. Doubly nonlinear stochastic evolution equations II. Stoch PDE: Anal Comp 11, 307–347 (2023). https://doi.org/10.1007/s40072-021-00229-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00229-3

Keywords

Mathematics Subject Classification

Navigation