Skip to main content
Log in

Exponential moments for numerical approximations of stochastic partial differential equations

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

Stochastic partial differential equations (SPDEs) have become a crucial ingredient in a number of models from economics and the natural sciences. Many SPDEs that appear in such applications include non-globally monotone nonlinearities. Solutions of SPDEs with non-globally monotone nonlinearities are in nearly all cases not known explicitly. Such SPDEs can thus only be solved approximatively and it is an important research problem to construct and analyze discrete numerical approximation schemes which converge with strong convergence rates to the solutions of such SPDEs. In the case of finite dimensional stochastic ordinary differential equations (SODEs) with non-globally monotone nonlinearities it has recently been revealed that exponential integrability properties of the discrete numerical approximation scheme are a key instrument to establish strong convergence rates for the considered approximation scheme. Exponential integrability properties for appropriate approximation schemes have been established in the literature in the case of a large class of finite dimensional SODEs. To the best of our knowledge, there exists no result in the scientific literature which proves exponential integrability properties for a time discrete approximation scheme in the case of a SPDE. In particular, to the best of our knowledge, there exists no result in the scientific literature which establishes strong convergence rates for a time discrete approximation scheme in the case of a SPDE with a non-globally monotone nonlinearity. In this paper we propose a new class of tamed space-time-noise discrete exponential Euler approximation schemes that admit exponential integrability properties in the case of SPDEs. More specifically, the main result of this article proves that these approximation schemes enjoy exponential integrability properties for a large class of semilinear SPDEs with possibly non-globally monotone nonlinearities. In particular, we establish exponential moment bounds for the proposed approximation schemes in the case of stochastic Burgers equations, stochastic Kuramoto–Sivashinsky equations, and two-dimensional stochastic Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. (with \( d = 1 \), \( \mathcal {D} = (0,1) \), \( \eta = 0 \), \( \gamma = \nicefrac {1}{2} \), \( T = T \), \( \varepsilon = \varepsilon - \nicefrac {1}{ \sqrt{3} } \), \( \delta = \delta \), \( U = H \), \( H = H \), \( {\mathbb {H}}= \{ e_n :n \in \mathbb {N}\} \), \( \mathbb {U} = \{ e_n :n \in \mathbb {N}\} \), \( \lambda _{e_N} = - \pi ^2 N^2 \), \( ( \Omega , \mathcal {F}, {\mathbb {P}}, ( \mathcal {F}_t )_{t \in [0,T]} ) = ( \Omega , \mathcal {F}, {\mathbb {P}}, ( \sigma _\Omega ( (W_s )_{s \in [0,t]} ) )_{t \in [0,T]} ) \), \( W = W \), \( Q = Q \), \( A = A \), \( r = ( H_{ \nicefrac {1}{2} } \ni v \mapsto 2 \varepsilon \max \{ 1, \sqrt{ {\text {trace}}_H(Q) } \} + 2 \varepsilon \max \{ 1, \sqrt{ {\text {trace}}_H(Q) } \} \Vert (-A)^{ \nicefrac {1}{2} } v \Vert _H^2 \in [0,\infty ) ) \), \( b = ( (0,1) \times \mathbb {R}\ni (x,y) \mapsto 1 \in \mathbb {R}) \), \( \vartheta = {\text {trace}}_H(Q) \), \( c = 2 \varepsilon \max \{ 1, \sqrt{ {\text {trace}}_H(Q) } \} \), \( R = {\text {Id}}_H \), \( F = F \), \( \xi = ( \Omega \ni \omega \mapsto \xi \in W_0^{1,2}( (0,1), \mathbb {R}) ) \), \( Y^{ \{ 0, T/M,\ldots , T \}, \{ e_1, \ldots , e_N \}, \{ e_1, \ldots , e_N \}} = Y^{N, M} \) for \( N, M \in \mathbb {N}\), \( \varepsilon \in [1, \infty ) \) in the notation of Corollary 4.11).

References

  1. Andersson, A., Jentzen, A., Kurniawan, R.: Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values. arXiv:1512.06899 (2016)

  2. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework. Texts in Applied Mathematics, vol. 39, 3rd edn. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  3. Becker, S., Jentzen, A.: Strong, convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations. arXiv:1601.05756 (2016)

  4. Bessaih, H., Brzeźniak, Z., Millet, A.: Splitting up method for the 2D stochastic Navier–Stokes equations. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 433–470 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Birnir, B.: The Kolmogorov–Obukhov statistical theory of turbulence. J. Nonlinear Sci. 23(4), 657–688 (2013)

    Article  MathSciNet  Google Scholar 

  6. Birnir, B.: The Kolmogorov–Obukhov Theory of Turbulence: A Mathematical Theory of Turbulence. SpringerBriefs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  7. Blömker, D., Romito, M.: Stochastic PDEs and lack of regularity: a surface growth equation with noise: existence, uniqueness, and blow-up. Jahresber. Dtsch. Math. Ver. 117(4), 233–286 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)

    Book  Google Scholar 

  9. Bou-Rabee, N., Hairer, M.: Nonasymptotic mixing of the MALA algorithm. IMA J. Numer. Anal. 33(1), 80–110 (2013)

    Article  MathSciNet  Google Scholar 

  10. Brzeźniak, Z., Carelli, E., Prohl, A.: Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33(3), 771–824 (2013). https://doi.org/10.1093/imanum/drs032

    Article  MathSciNet  MATH  Google Scholar 

  11. Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible Stokes equation. SIAM J. Numer. Anal. 50(6), 2917–2939 (2012)

    Article  MathSciNet  Google Scholar 

  12. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)

    Article  MathSciNet  Google Scholar 

  13. Cox, S.G., Hutzenthaler, M., Jentzen, A.: Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations. arXiv:1309.5595v2 (2014)

  14. Cozma, A., Reisinger, C.: Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process. Discrete Contin. Dyn. Syst. Ser. B 21(10), 3359–3377 (2016)

    Article  MathSciNet  Google Scholar 

  15. Da Prato, G., Debussche, A.: Two-dimensional Navier–Stokes equations driven by a space–time white noise. J. Funct. Anal. 196(1), 180–210 (2002)

    Article  MathSciNet  Google Scholar 

  16. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA Nonlinear Differ. Equ. Appl. 1(4), 389–402 (1994)

    Article  MathSciNet  Google Scholar 

  17. Da Prato, G., Jentzen, A., Röckner, M.A.: Mild Ito formula for SPDEs. arXiv:1009.3526 (2012)

  18. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  19. Dörsek, P.: Semigroup splitting and cubature approximations for the stochastic Navier–Stokes equations. SIAM J. Numer. Anal. 50(2), 729–746 (2012)

    Article  MathSciNet  Google Scholar 

  20. Duan, J., Ervin, V.J.: On the stochastic Kuramoto–Sivashinsky equation. Nonlinear Anal. 44(2), 205–216 (2001)

    Article  MathSciNet  Google Scholar 

  21. Filipović, D., Tappe, S., Teichmann, J.: Term structure models driven by Wiener processes and Poisson measures: existence and positivity. SIAM J. Financ. Math. 1(1), 523–554 (2010)

    Article  MathSciNet  Google Scholar 

  22. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105(2), 143–158 (1996)

    Article  Google Scholar 

  23. Gyöngy, I., Sabanis, S., Šiška, D.: Convergence of tamed Euler schemes for a class of stochastic evolution equations. Stoch. Partial Differ. Equ. Anal. Comput. 4(2), 225–245 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  25. Hairer, M., Voss, J.: Approximations to the stochastic Burgers equation. J. Nonlinear Sci. 21(6), 897–920 (2011)

    Article  MathSciNet  Google Scholar 

  26. Harms, P., Stefanovits, D., Teichmann, J., Wüthrich, M.V.: Consistent recalibration of yield curve models. Math. Finance. https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12159 (2017)

  27. Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. arXiv:1401.0295 (2014)

  28. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236, 1112 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  Google Scholar 

  30. Hutzenthaler, M., Jentzen, A., Salimova, D.: Strong, convergence of full-discrete nonlinearity-truncated accelerated exponential Euler-type approximations for stochastic Kuramoto–Sivashinsky equations. arXiv:1604.02053 (2016)

  31. Hutzenthaler, M., Jentzen, A., Wang, X.: Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations. Math. Comput. 87(311), 1353–1413 (2018)

    Article  MathSciNet  Google Scholar 

  32. Jentzen, A., Pušnik, P.: Strong, convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. arXiv:1504.03523 (2015)

  33. Jentzen, A., Pušnik, P.: Exponential moments for numerical approximations of stochastic partial differential equations. arXiv:1609.07031 (2016)

  34. Kallianpur, G., Xiong, J.: Stochastic models of environmental pollution. Adv. Appl. Probab. 26(2), 377–403 (1994)

    Article  MathSciNet  Google Scholar 

  35. Kouritzin, M.A., Long, H.: Convergence of Markov chain approximations to stochastic reaction–diffusion equations. Ann. Appl. Probab. 12(3), 1039–1070 (2002)

    Article  MathSciNet  Google Scholar 

  36. Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic Ising–Kac model to \(\Phi ^4_2\). Commun. Pure Appl. Math. 70(4), 717–812 (2017)

    Article  Google Scholar 

  37. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, vol. 3. Academic Press Inc, New York (1967)

    MATH  Google Scholar 

  38. Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab. 18, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  39. Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016)

    Article  MathSciNet  Google Scholar 

  40. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Volume of 143 Applied Mathematical Sciences. Springer, New York (2002)

    Book  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Zdzisław Brzeźniak for several useful comments that helped to improve the presentation of the results. This project has been supported through the SNSF-Research Project \( 200021\_156603 \) “Numerical approximations of nonlinear stochastic ordinary and partial differential equations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primož Pušnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jentzen, A., Pušnik, P. Exponential moments for numerical approximations of stochastic partial differential equations. Stoch PDE: Anal Comp 6, 565–617 (2018). https://doi.org/10.1007/s40072-018-0116-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0116-y

Keywords

Navigation