Skip to main content
Log in

Entanglement entropy as a marker of phase transition in the Ising model

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The uniform two-dimensional tensor network of the partition function is interpreted as a multiple product of the one-dimensional quantum Hamiltonian, which is the one-dimensional transfer operator. We perform infinite density matrix renormalization group with matrix product operator and matrix product state in the actual contraction of the two-dimensional tensor network. In the process of contraction, we focus on the half-chain entanglement entropy of the one-dimensional quantum state linked to the one-dimensional transfer operator. We show that the entanglement entropy correctly exhibits a singularity at the critical temperature in the Ising model. We note that when we try to determine the critical temperature, the entanglement entropy can do more precisely than the magnetization order parameter. The difference between our numerical result and the analytical value of the critical temperature is given by 0.00003. For complex models inaccessible to analytical techniques, our method using the entanglement entropy is suitable as long as the partition function is written as a tensor network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Orus, Ann. Phys. 349, 117 (2014)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S. Östlund, S. Rommer, Phys. Rev. Lett. 75, 3537 (1995)

    Article  ADS  PubMed  Google Scholar 

  4. U. Schollwöck, Annals Phys. 326, 96 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. I. P. McCulloch, e-print arXiv:0804.2509 (2008)

  6. M.H. Chung, J. Korean Phys. Soc. 78, 700 (2021)

    Article  ADS  CAS  Google Scholar 

  7. M.H. Chung, E. Orignac, D. Poilblanc, S. Capponi, Phys. B 604, 412665 (2021)

    Article  CAS  Google Scholar 

  8. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  Google Scholar 

  9. G. Vidal, J.I. Lattorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  PubMed  Google Scholar 

  11. M.C. Cha, M.H. Chung, Phys. B 536, 701 (2018)

    Article  ADS  CAS  Google Scholar 

  12. T. Nishino, K. Okunishi, J. Phys. Soc. Jpn. 67, 3066 (1998)

    Article  ADS  CAS  Google Scholar 

  13. M.T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, F. Verstraete, Phys. Rev. B 98, 235148 (2018)

    Article  ADS  CAS  Google Scholar 

  14. M.H. Chung, J. Korean Phys. Soc. 82, 776 (2023)

    Article  ADS  Google Scholar 

  15. C.N. Yang, Phys. Rev. 85, 809 (1952)

    Article  ADS  Google Scholar 

  16. F.F. Song, G.M. Zhang, Phys. Rev. B 105, 134516 (2022)

    Article  ADS  CAS  Google Scholar 

  17. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2021R1F1A1052347). The author would like to thank D. Poilblanc for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Hoon Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, MH. Entanglement entropy as a marker of phase transition in the Ising model. J. Korean Phys. Soc. 84, 356–361 (2024). https://doi.org/10.1007/s40042-023-01003-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-01003-5

Keywords

Navigation