Skip to main content
Log in

Core–shell-structured Li[(Ni)0.5(Ni0.7Co0.3)0.5]O2 cathode material with high capacity and rate performance for high-energy Li-ion batteries

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The poor cycle performance and rate capability of LiNiO2 limit its practical applications. Improving the rate performance of the core (LiNiO2) using a shell (LiNi0.7Co0.3O2) to protect it from side reactions with the electrolyte and its unstable structure at high voltages is essential. Electrochemical test results showed that the discharge capacity of the core–shell was 152.5 mA h g−1 (64.9%) at 10 C (1700 mA g−1), which indicated a 29.9% improvement in high-rate performance compared to the core with a discharge capacity of 117.4 mA h g−1 (52.4%). The core–shell showed a high discharge capacity retention rate of 96.0% after five charge and discharge cycles at 10 C. In addition, the charge transfer resistance of the core–shell at 4.5 V after the first cycle was 218.81 Ω, which showed a decrease in resistance of approximately 55% compared to the resistance of the core (395.52 Ω). The electrochemical test results indicated that the shell coating increased the structural stability by inhibiting side reactions with the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 

Similar content being viewed by others

References

  1. S.T. Myung, K. Amine, Y.K. Sun, J. Power Sources 283, 219–236 (2015)

    Article  ADS  Google Scholar 

  2. Y. You, H. Celio, J.Y. Li, A. Dolocan, A. Manthiram, Angew. Chem. Int. Ed. 57, 6480 (2018)

    Article  Google Scholar 

  3. Y.J. Lim, S.M. Lee, H. Lim, B. Moon, K.S. Han, J.H. Kim, J.H. Song, J.S. Yu, W. Cho, M.S. Park, Electrochim. Acta 282, 311 (2018)

    Article  Google Scholar 

  4. J.Y. Li, W.D. Li, Y. You, A. Manthiram, Adv. Energy Mater. 8, 1801957 (2018)

    Article  Google Scholar 

  5. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.H. Ryou, W.S. Yoon, Adv. Energy Mater. 8, 1701788 (2018)

    Article  Google Scholar 

  6. J.Y. Li, W.D. Li, S.Y. Wang, K. Jarvis, J.H. Yang, A. Manthiram, Chem. Mater. 30, 3101 (2018)

    Article  Google Scholar 

  7. S.Q. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W.W. Ju, C.Y. Ouyang, R.J. Xiao, Chin. Phys. B 25, 018212 (2016)

    Article  ADS  Google Scholar 

  8. J.W. Shin, J.T. Son, J. Korean Phys. Soc. 74(1), 53–55 (2019)

    Article  ADS  Google Scholar 

  9. D.P. Abraham, R.D. Twesten, M. Balasubramanian, J. Kropf, D. Fischer, J. McBreen, I. Petrov, K. Amine, J. Electrochem. Soc. 150, A1450 (2003)

    Article  Google Scholar 

  10. W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. 54, 4440 (2015)

    Article  Google Scholar 

  11. J. Li, L.E. Downie, L. Ma, W. Qiu, J.R. Dahn, J. Electrochem. Soc. 162, 1401–1408 (2015)

    Article  Google Scholar 

  12. S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, K.W. Nam, ACS Appl. Mater. Interfaces 6, 22594–22601 (2014)

    Article  Google Scholar 

  13. Q.-Q. Qiu, Z. Shadike, Q.-C. Wang, X.-Y. Yue, X.-L. Li, S.-S. Yuan, F. Fang, X.-J. Wu, A. Hunt, I. Waluyo, S.-M. Bak, X.-Q. Yang, Y.-N. Zhou, ACS Appl. Mater. Interfaces 11, 23213–23221 (2019)

    Article  Google Scholar 

  14. K. Min, K. Kim, C. Jung, S.W. Seo, Y.Y. Song, H.S. Lee, J. Shin, E. Cho, J. Power Sources 315, 111–119 (2016)

    Article  ADS  Google Scholar 

  15. R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Groeting, K. Albe, C. Hess, W. Jaegermann, Mater. Sci. Eng. B 192, 3–25 (2015)

    Article  Google Scholar 

  16. N. Yabuuchi, T. Ohzuku, J. Power Sources 119–121, 171–174 (2003)

    Article  Google Scholar 

  17. H. Zhang, J. Xu, J Zhang, Front. Mater. 6, A 309 (2019)

  18. P. Guan, L. Zhou, L. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 43, 220–235 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of SMEs and Startups, Republic of Korea (S3045542); Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2019R1A6C1010045); the Technology Innovation Program (20003747, Development of high-performance cathode material manufacturing technology through valuable metal upcycling from waste batteries and waste cathode material) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea); and the Korea Agency for Infrastructure Technology; the National Research Foundation of Korea(NRF) funded by the Korea government (MSIT) (No.2021R1F1A1063481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Tae Son.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.J., Tran, T.B.T. & Son, JT. Core–shell-structured Li[(Ni)0.5(Ni0.7Co0.3)0.5]O2 cathode material with high capacity and rate performance for high-energy Li-ion batteries. J. Korean Phys. Soc. 83, 780–787 (2023). https://doi.org/10.1007/s40042-023-00923-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00923-6

Keywords

Navigation