Skip to main content
Log in

Optimization of two major interfaces in MoS2 FETs with low frequency noise analysis

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The two interfaces in direct contact with the channel are the main factors affecting the performance of MoS2 FETs. They are the source–drain electrode contacts and the interface between the channel and the gate dielectric material. As carriers move through the channel, they may fluctuate if they encounter a non-uniform electrostatic field. Carrier fluctuations are a major cause of performance degradation in semiconductor devices and circuits, resulting from delayed turn-on in the channel and low carrier mobility. This issue is becoming increasingly pronounced as low-dimensional semiconductor materials are used or as devices are miniaturized to an extreme extent. In this study, we utilized low-temperature deposited indium electrodes and hexagonal boron nitride(h-BN) as gate dielectric materials in MoS2 devices, aiming to minimize interfacial defects. The In-MoS2/h-BN device exhibited negligible contact resistance and interfacial Coulomb scattering, and a remarkably reduced density of dielectric traps, resulting in a negative threshold voltage shift of approximately 60 V and a tenfold improvement in carrier mobility. DC and low frequency noise (LFN) measurements were used to evaluate the impact of interfacial properties of the devices. The LFN modeling demonstrated that interfacial Coulomb scattering was reduced in the low-current region for devices utilizing the indium electrodes. The LFN provided reasonable results compared with the DC analysis, and also detailed information about the behavior of carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Mater. Today 20, 116 (2017)

    Article  Google Scholar 

  2. C.H. Gong, Y.X. Zhang, W. Chen, J.W. Chu, T.Y. Lei, J.R. Pu, L.P. Dai, C.Y. Wu, Y.H. Cheng, T.Y. Zhai, L. Li, J. Xiong, Adv. Sci. (2017). https://doi.org/10.1002/advs.201700231

    Article  Google Scholar 

  3. S.A. Han, R. Bhatia, S.W. Kim, Nano Converg. (2015). https://doi.org/10.1186/s40580-015-0048-4

    Article  Google Scholar 

  4. C. Kim, I. Moon, D. Lee, M.S. Choi, F. Ahmed, S. Nam, Y. Cho, H.J. Shin, S. Park, W.J. Yoo, ACS Nano 11, 1588 (2017)

    Article  Google Scholar 

  5. X.C. Liu, M.S. Choi, E. Hwang, W.J. Yoo, J. Sun, Adv. Mater. (2022). https://doi.org/10.1002/adma.202108425

    Article  Google Scholar 

  6. K. Sotthewes, R. van Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas, H.J.W. Zandvliet, P. Bampoulis, J. Phys. Chem. C 123, 5411 (2019)

    Article  Google Scholar 

  7. T. Le Quang, V. Cherkez, K. Nogajewski, M. Potemski, M.T. Dau, M. Jamet, P. Mallet, J.Y. Veuillen, 2d Mater. (2017). https://doi.org/10.1088/2053-1583/aa7b03

    Article  Google Scholar 

  8. J.H. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Phys. Rev. X (2014). https://doi.org/10.1103/PhysRevX.4.031005

    Article  Google Scholar 

  9. T. Ansh, J. Kumar, G. Sheoran, H.B. Variar, R. Mishra, H. Kuruva, A. Meersha, A. Mishra, S. Raghavan, M. Shrivastava, IEEE Transact. Electron Dev. 67, 717 (2020)

    Article  ADS  Google Scholar 

  10. R.C. Luo, W.W. Xu, Y.Z. Zhang, Z.Q. Wang, X.D. Wang, Y. Gao, P. Liu, M.W. Chen, Nat. Communicat. (2020). https://doi.org/10.1038/s41467-020-14753-8

    Article  Google Scholar 

  11. C.M. Went, J. Wong, P.R. Jahelka, M. Kelzenberg, S. Biswas, M.S. Hunt, A. Carbone, H.A. Atwater, Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aax6061

    Article  Google Scholar 

  12. D.H. Choi, K.A. Min, S. Hong, B.K. Kim, M.H. Bae, J.J. Kim, Scient Rep (2021). https://doi.org/10.1038/s41598-021-97110-z

    Article  Google Scholar 

  13. B.K. Kim, T.H. Kim, D.H. Choi, H. Kim, K. Watanabe, T. Taniguchi, H. Rho, J.J. Kim, Y.H. Kim, M.H. Bae, Npj 2d Mater. Applicat. (2021). https://doi.org/10.1038/s41699-020-00191-z

    Article  Google Scholar 

  14. T. Knobloch, B. Uzlu, Y.Y. Illarionov, Z.X. Wang, M. Otto, L. Filipovic, M. Waltl, D. Neumaier, M.C. Lemme, T. Grasser, Nat. Electron. 5, 356 (2022)

    Article  Google Scholar 

  15. P. Zhao, A. Khosravi, A. Azcatl, P. Bolshakov, G. Mirabelli, E. Caruso, C.L. Hinkle, P.K. Hurley, R.M. Wallace, C.D. Young, 2d Materials (2018). https://doi.org/10.1088/2053-1583/aab728

    Article  Google Scholar 

  16. D. Kim, H. Du, T. Kim, S. Shin, S. Kim, M. Song, C. Lee, J. Lee, H. Cheong, D.H. Seo, S. Seo, Aip Adv. (2016). https://doi.org/10.1063/1.4966049

    Article  Google Scholar 

  17. G.H. Lee, X. Cui, Y.D. Kim, G. Arefe, X. Zhang, C.H. Lee, F. Ye, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, ACS Nano 9, 7019 (2015)

    Article  Google Scholar 

  18. W.Z. Bao, X.H. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, Applied Physics Letters (2013). https://doi.org/10.1063/1.4789365

    Article  Google Scholar 

  19. M.Y. Chan, K. Komatsu, S.L. Li, Y. Xu, P. Darmawan, H. Kuramochi, S. Nakaharai, A. Aparecido-Ferreira, K. Watanabe, T. Taniguchi, K. Tsukagoshi, Nanoscale 5, 9572 (2013)

    Article  ADS  Google Scholar 

  20. D.H. Liu, X.S. Chen, Y.P. Yan, Z.W. Zhang, Z.P. Jin, K.Y. Yi, C. Zhang, Y.J. Zheng, Y. Wang, J. Yang, X.F. Xu, J. Chen, Y.H. Lu, D.P. Wei, A.T.S. Wee, D.C. Wei, Nat. Communicat. (2019). https://doi.org/10.1038/s41467-019-09016-0

    Article  Google Scholar 

  21. G. Ghibaudo, Electron. Lett. 24, 543 (1988)

    Article  ADS  Google Scholar 

  22. M. Mouis and G. Ghibaudo, in Nanoscale CMOS (2013), p. 475.

  23. D. Fleury, A. Cros, H. Brut, and G. Ghibaudo, 2008 In: IEEE International Conference on Microelectronic Test Structures, Conference Proceedings, 160 (2008).

  24. H.Y. Chang, W.N. Zhu, D. Akinwande, Appl Phys Lett (2014). https://doi.org/10.1063/1.4885398

    Article  Google Scholar 

  25. M.V. Haartman, M. Östling, In low-frequency noise in advanced mos devices (Springer, Netherlands, Dordrecht, 2007)

    Book  Google Scholar 

  26. F. Balestra, G. Ghibaudo, J. Jomaah, Int. J. Num. Modell-Electron Networks Dev. Fields 28, 613 (2015)

    Article  Google Scholar 

  27. C.G. Theodorou, N. Fasarakis, T. Hoffman, T. Chiarella, G. Ghibaudo, C.A. Dimitriadis, Solid-State Electron. 82, 21 (2013)

    Article  ADS  Google Scholar 

  28. H. Ji, M.K. Joo, Y. Yun, J.H. Park, G. Lee, B.H. Moon, H. Yi, D. Suh, S.C. Lim, ACS Appl. Mater. Interfaces. 8, 19092 (2016)

    Article  Google Scholar 

  29. H. Ji, G. Lee, M.K. Joo, Y. Yun, H. Yi, J.H. Park, D. Suh, S.C. Lim, Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4982680

    Article  Google Scholar 

  30. H.J. Kwon, H. Kang, J. Jang, S. Kim, C.P. Grigoropoulos, Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4866785

    Article  Google Scholar 

  31. H. Ji, H. Yi, S. Wonkil, H. Kim, S.C. Lim, Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab1f36

    Article  Google Scholar 

  32. A. Laturia, M.L. Van de Put, W.G. Vandenberghe, Npj 2d Mater. Applicat. (2018). https://doi.org/10.1038/s41699-018-0050-x

    Article  Google Scholar 

  33. H. Ji, M.K. Joo, H. Yi, H. Choi, H.Z. Gul, M.K. Ghimire, S.C. Lim, ACS Appl. Mater. Interfaces. 9, 29185 (2017)

    Article  Google Scholar 

  34. F. Ali, F. Ahmed, M. Taqi, S.B. Mitta, T.D. Ngo, D.J. Eom, K. Watanabe, T. Taniguchi, H. Kim, E. Hwang, W.J. Yoo, Materials (2021). https://doi.org/10.1088/2053-1583/abf98d

    Article  Google Scholar 

  35. in Semiconductor Material and Device Characterization (2005), p. 370.

  36. J. L. Liu, Y. J. Zhou, and W. J. Zhu, Applied Physics Letters 113 (2018).

  37. J. Pak, K. Cho, J.K. Kim, Y. Jang, J. Shin, J. Kim, J. Seo, S. Chung, T. Lee, Nano Futures (2019). https://doi.org/10.1088/2399-1984/aafc3a

    Article  Google Scholar 

  38. X.M. Zou, C.W. Huang, L.F. Wang, L.J. Yin, W.Q. Li, J.L. Wang, B. Wu, Y.Q. Liu, Q. Yao, C.Z. Jiang, W.W. Wu, L. He, S.S. Chen, J.C. Ho, L. Liao, Adv. Mater. 28, 2062 (2016)

    Article  Google Scholar 

  39. Y. Liu, S.T. Cai, X.M. Xiong, W.J. Li, Modern Phys. Lett. B (2019). https://doi.org/10.1142/S0217984919501859

    Article  Google Scholar 

  40. S. Rumyantsev, G. Liu, W. Stillman, M. Shur, A.A. Balandin, J. Phys-Condens. Matter (2010). https://doi.org/10.1088/0953-8984/22/39/395302

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2019R1A2C1010742) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjin Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Choi, DH. & Ahn, Bw. Optimization of two major interfaces in MoS2 FETs with low frequency noise analysis. J. Korean Phys. Soc. 82, 1098–1104 (2023). https://doi.org/10.1007/s40042-023-00825-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00825-7

Keywords

Navigation