Skip to main content
Log in

In situ monitoring of plasma ignition step during photoresist stripping using O2/N2 and O2/Ar

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The formation of ions and radicals is determined by plasma parameters defined in terms of electron temperature and electron density. Typically, invasive methods (Langmuir probes and cut-off probes) and non-invasive methods (optical emission spectroscopy) are used to characterize plasmas. Invasive approaches, conversely, exhibit limits owing to tip corrosion, while non-invasive methods exhibit limitations due to difficult calculations under high-pressure settings. The plasma ignition mechanism and plasma characteristics were connected in this investigation utilizing an optical plasma monitoring system sensor. The correlation between electron temperature and electron density was confirmed by determining the time required for the plasma to stabilize after ignition and the total light intensity emitted after stabilization. In addition, a photoresist strip process was used to link plasma characteristics with variations in plasma radical production. Then, the influence of the plasma characteristics on the process outcome was validated using the photoresist strip rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The experimental data can be available upon request.

References

  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2005

  2. B. Thedjoisworo, D. Cheung and V. Crist, J. Vac. Sci. Technol. Part B, 31, 21206 (2013) https://doi.org/10.1116/1.4792254

  3. S. An, J. E. Choi and S. J. Hong, J. Kor. Phys. Soc., 79, 1027 (2021) https://doi.org/10.1007/s40042-021-00307-8

  4. S. H. Park, K. E. Kim and S. J. Hong, Coatings, 11, 105 (2021) https://doi.org/10.3390/coatings11010105

  5. J. T. Gudmundsson, Plasma Sources Sci. Technol., 10, 76 (2001) https://doi.org/10.1088/0963-0252/10/1/310

  6. W. Hwang, Y. -K. Kim and M. E. Rudd, J. Chem. Phys., 104, 2956 (1996) https://doi.org/10.1063/1.471116

  7. Y. Chang, Y. Huo and G. Yu, Phys. Fluids Part B, 4, 3621 (1992) https://doi.org/10.1063/1.860370

  8. A. M. Cook, J. S. Hummelt, M. A. Shapiro and R. J. Temkin, Phys. Plasmas, 18, 080707 (2011) https://doi.org/10.1063/1.3626383

  9. K. L. VanVoorhies, T. J. Bonazza and J. E. Smith, SAE Technical Paper, 929502 (1992) https://doi.org/10.4271/929502

  10. E. Gogolides, D. Mary, A. Rhallabi and G. GuyTurban, Jpn. J. App. Phys., 34, 261 (1995) https://doi.org/10.1143/JJAP.34.261

  11. T. Tatsumi, H. Hayashi, S. Morishita, S. Noda, M. Okigawa, N. Itabashi, Y. Hikosaka and M. Inoue, Jpn. J. Appl. Phys., 37, 2394 (1998) https://doi.org/10.1143/JJAP.37.2394

  12. J. Kim, Y. Shin, K. Chung and Y. Yoo, Appl. Phys. Lett., 85, 1922 (2004) https://doi.org/10.1063/1.1788880

  13. A. Schwabedissen, E. C. Benck and J. R. Roberts, Phys. Rev. E, 55, 3450 (1997) https://doi.org/10.1103/PhysRevE.55.3450

  14. R. L. Merlino, Am. J. Phys., 75, 1078 (2007) https://doi.org/10.1119/1.2772282

  15. T. K. Popov, M. Dimitrova, P. Ivanova, J. Kovačič, T. Gyergyek, R. Dejarnac, J. Stöckel, M. A. Pedrosa, D. López-Bruna and C. Hidalgo, Plasma Sources Sci. Technol., 25, 033001 (2016) https://doi.org/10.1088/0963-0252/25/3/033001

  16. S. J. Kim, J. J. Lee, Y. S. Lee, D. W. Kim and S. J. You, AIP Adv., 11, 025241 (2021) https://doi.org/10.1063/5.0033222

  17. H. J. Yeom, J. H. Kim, D. H. Choi, E. S. Choi, M. Y. Yoon, D. J. Seong, S. J. You and H. Lee, Plasma Sources Sci. Technol., 29, 035016 (2020) https://doi.org/10.1088/1361-6595/ab62d9

  18. S. J. Kim, J. J. Lee, D. W. Kim, J. H. Kim and S. J. You, Plasma Sources Sci. Technol., 28, 055014 (2019) https://doi.org/10.1088/1361-6595/ab1dc8

  19. B. K. Na, K. H. You, D. W. Kim, H. Y. Chang, S. J. You and J. H. Kim, Rev. Sci. Instrum., 83, 013510 (2012) https://doi.org/10.1063/1.3680103

  20. W. Seifert, D. Johanning, H. -R. Lehmann and N. Bankov, Beiträge aus der Plasmaphysik, Contrib. to Plasma Phys., 26, 237 (1986) https://doi.org/10.1002/ctpp.19860260404

  21. K. Oyama, J. Astron. Space Sci., 32, 167 (2015) https://doi.org/10.5140/JASS.2015.32.3.167

  22. J. B. Boffard, C. C. Lin and C. A. DeJoseph Jr, J. Phys. Part D, 37, R143 (2004) https://doi.org/10.1088/0022-3727/37/12/R01

  23. X. Zhu, W. Chen, J. Li and Y. Pu, J. Phys. Part D, 42, 025203 (2008) https://doi.org/10.1088/0022-3727/42/2/025203

  24. X. Zhu and Y. Pu, J Phys. Part D, 43, 403001 (2010) https://doi.org/10.1088/0022-3727/43/40/403001

  25. X. Zhu, Y. Pu, Y. Celik, S. Siepa, E. Schüngel, D. Luggenhölscher and U. Czarnetzki, Plasma Sources Sci. Technol., 21, 024003 (2012) https://doi.org/10.1088/0963-0252/21/2/024003

  26. Y. Ichikawa, T. Sakamoto, A. Nezu, H. Matsuura and H. Akatsuka, Jpn. J. Appl. Phys., 49, 106101 (2010) https://doi.org/10.1143/JJAP.49.106101

  27. T. H. Chung, H. Ra Kang and M. Keun Bae, Phys. Plasmas, 19, 113502 (2012) https://doi.org/10.1063/1.4765357

  28. Z. Liu, S. Li, Q. Chen, L. Yang and Z. Wang, Plasma Sci. Technol., 13, 458 (2011) https://doi.org/10.1088/1009-0630/13/4/14

  29. K. Chai and D. Kwon, Spectrochim. Acta Part B, 183, 106269 (2021) https://doi.org/10.1016/j.sab.2021.106269

  30. M. Z. Arshad and S. J. Hong, Trans. Electr. Electron. Mater., 19, 96 (2018) https://doi.org/10.1007/s42341-018-0013-0

  31. S. J. Hong, J. H. Ahn, W. T. Park and G. S. May, Trans. Electr. Electron. Mater., 14, 71 (2013) https://doi.org/10.4313/TEEM.2013.14.2.71

  32. Y. Lee, W. Song and S. J. Hong, Jpn. J. Appl. Phys., 59, SJJD02 (2020) https://doi.org/10.35848/1347-4065/ab85de

  33. S. Lee, H. J. Kwon and S. J. Hong, Sci. Adv. Mater., 13, 2213 (2021) https://doi.org/10.1166/sam.2021.4083

  34. P. Verdonck, V. Šamara, A. Goodyear, A. Ferchichi, E. Van Besien, M. R. Baklanov and N. Braithwaite, Thin Solid Films, 520, 464 (2011) https://doi.org/10.1016/j.tsf.2011.06.046

  35. G. Brussaard, K. Letourneur, M. Schaepkens, M. Van de Sanden and D. C. Schram, J. Vac. Sci. Technol. Part B, 21, 61 (2003) https://doi.org/10.1116/1.1532021

  36. J. W. Metselaar, V. I. Kuznetsov and A. G. Zhidkov, J. Appl. Phys., 75, 4910 (1994) https://doi.org/10.1063/1.355779

  37. M. Jung and H. Choi, Thin Solid Films, 515, 2295 (2006) j.tsf.2006.03.030

  38. A. West, M. van der Schans, C. Xu, M. Cooke and E. Wagenaars, Plasma Sources Sci. Technol., 25, 02LT01 (2016) https://doi.org/10.1088/0963-0252/25/2/02LT01

  39. S. J. Lee, J. G. Yun, H. M. Lee, J. Y. Kim, J. H. Yun and J. G. Hong, Energies, 14, 1153 (2021) https://doi.org/10.3390/en14041153

  40. A. Bogaerts, R. Gijbels and J. Vlcek, J. Appl. Phys., 84, 121 (1998) https://doi.org/10.1063/1.368009

  41. C. Lee, D. B. Graves, M. A. Lieberman and D. W. Hess, J. Electrochem. Soc., 141, 1546 (1994) https://doi.org/10.1149/1.2054960

  42. Y. Tanaka, J. Phys. Part D, 37, 851 (2004) https://doi.org/10.1088/0022-3727/37/6/008

Download references

Acknowledgements

This work was supported by the Korea Institute for Advancement of Technology (KIAT) with the WC 300 project (GID: G02P10810001102), and the authors are grateful to Dr. J.K. Choi and Mr. D.W. Kim in New Power Plasma, Co. Ltd. for their engineering support and technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jeen Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.E., Kang, J.E. & Hong, S.J. In situ monitoring of plasma ignition step during photoresist stripping using O2/N2 and O2/Ar. J. Korean Phys. Soc. 82, 173–180 (2023). https://doi.org/10.1007/s40042-022-00665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00665-x

Keywords

Navigation