Skip to main content
Log in

Multi-physics field simulation and parametric optimization of a medium-power inductively coupled plasma torch

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, a two-dimensional model of a medium-power inductively coupled plasma (ICP) torch was established to investigate the effects of different geometric parameters on the plasma properties, such as the temperature, velocity and electromagnetic field by performing multi-physical field-coupling simulations. The effects of the coil position, number of coil turns, input power and inductive current frequency on the plasma properties were studied and discussed in detail for a medium-power ICP torch. The results show that the coil position can affect the plasma uniformity, i.e., with increasing distance between the coil and the middle quartz tube, the plasma uniformity increases. When the number of coil turns is small, the electromagnetic field intensity is strong. In addition, when the input power and the current frequency are enhanced, the plasma temperature and volume both increase. Due to the effect of E–H mode conversion hysteresis, as the input power is increased, the temperature changes little, but the electromagnetic field intensity and the plasma velocity increase significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Wu, J. Zhang, X. Kang, P. Jing, Rare Metal Mater. Eng. 36(S3), 562–566 (2007)

    Google Scholar 

  2. X. Xia, X. Zheng, F. Wang, H. Liu, X. Cai, R. Bai, China Tungsten Ind. 29(04), 45–48 (2014)

    Google Scholar 

  3. Y. Chen, J. Xie, Q. Jan et al., Trans. Mater. Heat Treat. 41(7), 14–24 (2020)

    Google Scholar 

  4. X. Liu, Q. Wang, P. Hu, Q. Chen, Heat Treat. Met. 40(10), 76–80 (2015)

    Google Scholar 

  5. H. Zhu, H. Tong, F. Yang, G. Ye, C. Cheng, L. Chen, Nucl. Fus. Plasma Phys. 33(02), 181–186 (2013)

    Google Scholar 

  6. R. Jia, T. Luo, L. Chen et al., Nucl. Fus. Plasma Phys. 38(04), 473–481 (2018)

    Google Scholar 

  7. W. Chen, L. Chen, C. Liu, C. Cheng, H. Tong, H. Zhu, Chin. J. Vacuum Sci. Technol. 37(06), 591–599 (2017)

    Google Scholar 

  8. W. Chen, L. Chen, C. Liu et al., High Voltage Engineering 45(1), 316–323 (2019)

    Google Scholar 

  9. Z. Hao, Y. Hua, J. Song, C. Ren., Phys. Plasmas, 27 (4), 043502 (2020)

  10. S.B. Punjabi, N. K. Joshi, H.A. Mangalvedekar, B.K. Lande, A.K. Das, D.C. Kothari., Phys. Plasmas, 19 (1), 821 (2012)

  11. I.K. Vladimir, A.G. Valery et al., Plasma Sour. Sci. Technol. 26(7), 075013 (2017)

    Google Scholar 

  12. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sour. Sci. Technol. 11(4), 525–543 (2002)

    Article  ADS  Google Scholar 

  13. S.W. Xue, P. Proulx, M.I. Boulos, J. Phys. D: Appl. Phys. 34, 1897 (2001)

    Article  ADS  Google Scholar 

  14. C. Zhao, Lanzhou University of Technology [M], (2014)

  15. H. Zhu, H. Tong, G. Ye, L. Chen, Nucl. Fus. Plasma Phys. 32(03), 199–205 (2012)

    Google Scholar 

  16. X. Liu, Q. Wang, P. Hu et al., Rare Metal Mater. Eng. 45(05), 1325–1329 (2016)

    Google Scholar 

  17. Y. Gao, X. Wang et al., Guangzhou Chem. Ind. 45(03), 29–31 (2017)

    Google Scholar 

  18. Y. Gao, M. Li, Y. Zhang et al., Ordnance Mater. Sci. Eng. 34(06), 90–92 (2011)

    Google Scholar 

  19. S.B. Punjabi, S.N. Sahasrabudhe, N.K. Joshi et al., Phys. Plasmas 21(1), 013506 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 12175177) and by the China Postdoctoral Science Foundation (Grant No. 2021M693889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Lv, B., Qiu, Z. et al. Multi-physics field simulation and parametric optimization of a medium-power inductively coupled plasma torch. J. Korean Phys. Soc. 80, 221–232 (2022). https://doi.org/10.1007/s40042-021-00362-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00362-1

Keywords

Navigation