Skip to main content
Log in

Seesaw lepton masses and muon \(g-2\) from heavy vector-like leptons

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We propose a model for the vector-like lepton to explain the small muon mass by a seesaw mechanism, based on lepton-specific two Higgs doublet models with a local \(U(1)'\) symmetry. There is no bare muon mass for a nonzero \(U(1)'\) charge of the leptophilic Higgs doublet, so the physical muon mass is generated due to the mixing between the vector-like lepton and the muon after the leptophilic Higgs doublet and the dark Higgs get VEVs. In this scenario, the non-decoupling effects of the vector-like lepton give rise to leading contributions to the muon \(g-2\), thanks to the light \(Z'\) and the light dark Higgs boson. We discuss various constraints on the model from lepton flavor violation, electroweak precision and Higgs data, as well as collider searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We used the notations for extra Higgs scalars and their mixing angles in Ref. [33, 34]

References

  1. B. Abi et al., Muon g-2. Phys. Rev. Lett. 126(14), 141801 (2021). https://doi.org/10.1103/PhysRevLett.126.141801. arXiv:2104.03281 [hep-ex]

    Article  ADS  Google Scholar 

  2. G.W. Bennett et al., Muon g-2 Collaboration. Phys. Rev. D (2006). https://doi.org/10.1103/PhysRevD.73.072003 ([hep-ex/0602035])

    Article  Google Scholar 

  3. T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C.M. Carloni Calame, M. Cè, G. Colangelo et al., Phys. Rept. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822 [hep-ph]

  4. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 80(3), 241 (2020). https://doi.org/10.1140/epjc/s10052-020-7792-2. arXiv:1908.00921 [hep-ph] (erratum: Eur. Phys. J. C 80 (2020) no.5, 410)

  5. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 77(12), 827 (2017). https://doi.org/10.1140/epjc/s10052-017-5161-6. arXiv:1706.09436 [hep-ph]

    Article  ADS  Google Scholar 

  6. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71 , 1515 (2011). https://doi.org/10.1140/epjc/s10052-012-1874-8. arXiv:1010.4180 [hep-ph] (erratum: Eur. Phys. J. C 72 (2012), 1874)

  7. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D (2018). https://doi.org/10.1103/PhysRevD.97.114025. arXiv:1802.02995 [hep-ph]

  8. G. Colangelo, M. Hoferichter, P. Stoffer, JHEP 02, 006 (2019). https://doi.org/10.1007/JHEP02(2019)006. arXiv:1810.00007 [hep-ph]

    Article  ADS  Google Scholar 

  9. M. Hoferichter, B.L. Hoid, B. Kubis, JHEP 08, 137 (2019). https://doi.org/10.1007/JHEP08(2019)137. arXiv:1907.01556 [hep-ph]

    Article  ADS  Google Scholar 

  10. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D (2020). https://doi.org/10.1103/PhysRevD.101.014029. arXiv:1911.00367 [hep-ph]

  11. A. Kurz, T. Liu, P. Marquard, M. Steinhauser, Phys. Lett. B 734, 144–147 (2014). https://doi.org/10.1016/j.physletb.2014.05.043. arXiv:1403.6400 [hep-ph]

    Article  ADS  Google Scholar 

  12. S. Borsanyi, Z. Fodor, J.N. Guenther, C. Hoelbling, S.D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K.K. Szabo et al., Nature 593(7857), 51–55 (2021). https://doi.org/10.1038/s41586-021-03418-1. arXiv:2002.12347 [hep-lat]

    Article  ADS  Google Scholar 

  13. A. Keshavarzi, W.J. Marciano, M. Passera, A. Sirlin, Phys. Rev. D (2020). https://doi.org/10.1103/PhysRevD.102.033002. arXiv:2006.12666 [hep-ph]

  14. G. Colangelo, M. Hoferichter, P. Stoffer, Phys. Lett. B 814, 136073 (2021). https://doi.org/10.1016/j.physletb.2021.136073. arXiv:2010.07943 [hep-ph]

    Article  Google Scholar 

  15. M. Passera, W.J. Marciano, A. Sirlin, Phys. Rev. D 78, 013009 (2008). https://doi.org/10.1103/PhysRevD.78.013009. arXiv:0804.1142 [hep-ph]

    Article  ADS  Google Scholar 

  16. A. Crivellin, M. Hoferichter, C.A. Manzari, M. Montull, Phys. Rev. Lett. (2020). https://doi.org/10.1103/PhysRevLett.125.091801. arXiv:2003.04886 [hep-ph]

  17. H. M. Lee, Phys. Rev. D (2021). https://doi.org/10.1103/PhysRevD.104.015007. arXiv:2104.02982 [hep-ph]

  18. V. Cirigliano, W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, R. Ruiz, JHEP 08, 103 (2021). https://doi.org/10.1007/JHEP08(2021)103. arXiv:2105.11462 [hep-ph]

    Article  ADS  Google Scholar 

  19. A. Crivellin, M. Hoferichter, JHEP 07, 135 (2021). https://doi.org/10.1007/JHEP07(2021)135. arXiv:2104.03202 [hep-ph]

    Article  ADS  Google Scholar 

  20. H.M. Lee, JHEP 01, 019 (2021). https://doi.org/10.1007/JHEP01(2021)019. arXiv:2006.13183 [hep-ph]

    Article  ADS  Google Scholar 

  21. J. Kawamura, S. Raby, A. Trautner, Phys. Rev. D (2019). https://doi.org/10.1103/PhysRevD.100.055030. arXiv:1906.11297 [hep-ph]

  22. E.J. Chun, T. Mondal, JHEP 11, 077 (2020). https://doi.org/10.1007/JHEP11(2020)077. [arXiv:2009.08314 [hep-ph]

    Article  ADS  Google Scholar 

  23. R. Dermisek, K. Hermanek, N. McGinnis, Phys. Rev. D (2021). https://doi.org/10.1103/PhysRevD.104.055033. arXiv:2103.05645 [hep-ph]

  24. G. Guedes, J. Santiago, arXiv:2107.03429 [hep-ph]

  25. C. Hati, J. Kriewald, J. Orloff, A.M. Teixeira, JHEP 07, 235 (2020). https://doi.org/10.1007/JHEP07(2020)235. arXiv:2005.00028 [hep-ph]

    Article  ADS  Google Scholar 

  26. M. Aoki, S. Kanemura, K. Tsumura, K. Yagyu, Phys. Rev. D 80, 015017 (2009). https://doi.org/10.1103/PhysRevD.80.015017. arXiv:0902.4665 [hep-ph]

    Article  ADS  Google Scholar 

  27. A. Pich, P. Tuzon, Phys. Rev. D 80, 091702 (2009). https://doi.org/10.1103/PhysRevD.80.091702. arXiv:0908.1554 [hep-ph]

    Article  ADS  Google Scholar 

  28. H.M. Lee, M. Park, W.I. Park, JHEP 12, 037 (2012). https://doi.org/10.1007/JHEP12(2012)037. arXiv:1209.1955 [hep-ph]

    Article  ADS  Google Scholar 

  29. F. Borzumati, G.R. Farrar, N. Polonsky, S.D. Thomas, Nucl. Phys. B 555, 53–115 (1999). https://doi.org/10.1016/S0550-3213(99)00328-4. arXiv:hep-ph/9902443 [hep-ph]

    Article  ADS  Google Scholar 

  30. C.W. Chiang, K. Yagyu, Phys. Rev. D 103(11), L111302 (2021). https://doi.org/10.1103/PhysRevD.103.L111302. arXiv:2104.00890 [hep-ph]

    Article  ADS  Google Scholar 

  31. Y. Cai, T. Han, T. Li, R. Ruiz, Front. Phys. 6, 40 (2018). https://doi.org/10.3389/fphy.2018.00040. arXiv:1711.02180 [hep-ph]

    Article  Google Scholar 

  32. R. Ruiz, JHEP 12, 165 (2015). https://doi.org/10.1007/JHEP12(2015)165. arXiv:1509.05416 [hep-ph]

    Article  ADS  Google Scholar 

  33. L. Bian, H.M. Lee, C.B. Park, Eur. Phys. J. C 78(4), 306 (2018). https://doi.org/10.1140/epjc/s10052-018-5777-1. arXiv:1711.08930 [hep-ph]

    Article  ADS  Google Scholar 

  34. L. Bian, H.M. Lee, C.B. Park, J. Korean Phys. Soc. 79(2), 138–159 (2021). https://doi.org/10.1007/s40042-021-00191-2. arXiv:2008.03629 [hep-ph]

    Article  ADS  Google Scholar 

  35. A.M. Sirunyan et al., CMS. JHEP 01, 148 (2021). https://doi.org/10.1007/JHEP01(2021)148. arXiv:2009.04363 [hep-ex]

    Article  Google Scholar 

  36. R. Dermisek, K. Hermanek, N. McGinnis, arXiv:2108.10950 [hep-ph]

  37. D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008). https://doi.org/10.1103/PhysRevLett.100.120801. arXiv:0801.1134 [physics.atom-ph]

    Article  ADS  Google Scholar 

  38. D. Hanneke, S.F. Hoogerheide, G. Gabrielse, Phys. Rev. A 83, 052122 (2011). https://doi.org/10.1103/PhysRevA.83.052122. arXiv:1009.4831 [physics.atom-ph]

    Article  ADS  Google Scholar 

  39. R.H. Parker, C. Yu, W. Zhong, B. Estey, H. Müller, Science 360, 191 (2018). https://doi.org/10.1126/science.aap7706. arXiv:1812.04130 [physics.atom-ph]

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D 91(3), 033006 (2015). https://doi.org/10.1103/PhysRevD.91.033006. arXiv:1412.8284 [hep-ph] (erratum: Phys. Rev. D 96 (2017) no.1, 019901)

  41. L. Morel, Z. Yao, P. Cladé, S. Guellati-Khélifa, Nature 588(7836), 61–65 (2020). https://doi.org/10.1038/s41586-020-2964-7

    Article  ADS  Google Scholar 

  42. J.P. Leveille, Nucl. Phys. B 137, 63–76 (1978). https://doi.org/10.1016/0550-3213(78)90051-2

    Article  ADS  Google Scholar 

  43. M. Tanabashi et al., Particle data group. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

  44. A. M. Baldini et al. MEG Collaboration, Eur. Phys. J. C 76(8), 434 , (2016). https://doi.org/10.1140/epjc/s10052-016-4271-x. arXiv:1605.05081 [hep-ex]

  45. B. Aubert et al., BaBar Collaboration. Phys. Rev. Lett. 104, 021802 (2010). https://doi.org/10.1103/PhysRevLett.104.021802. arXiv:0908.2381 [hep-ex]

    Article  ADS  Google Scholar 

  46. L. Lavoura, J.P. Silva, Phys. Rev. D 47, 2046–2057 (1993). https://doi.org/10.1103/PhysRevD.47.2046

    Article  ADS  Google Scholar 

  47. M. Carena, I. Low, C.E.M. Wagner, JHEP 08, 060 (2012). https://doi.org/10.1007/JHEP08(2012)060. arXiv:1206.1082 [hep-ph]

    Article  ADS  Google Scholar 

  48. G. Aad, ATLAS et al., Phys. Lett. B 796, 68–87, (2019). https://doi.org/10.1016/j.physletb.2019.07.016. arXiv:1903.06248 [hep-ex]

  49. J. Kawamura, S. Raby, A. Trautner, Phys. Rev. D (2020). https://doi.org/10.1103/PhysRevD.101.035026. arXiv:1911.11075 [hep-ph]

  50. G. Aad, ATLAS et al., https://doi.org/10.1007/JHEP07(2021)167. arXiv:2103.11684 [hep-ex]

  51. J. Kawamura, S. Raby, Phys. Rev. D (2021). https://doi.org/10.1103/PhysRevD.104.035007. arXiv:2104.04461 [hep-ph]

Download references

Acknowledgements

The work is supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2019R1A2C2003738). This work of KY is supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2021H1D3A2A02038697). The work of JS is supported by the Chung-Ang University Graduate Research Scholarship in 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Min Lee or Jiseon Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.M., Song, J. & Yamashita, K. Seesaw lepton masses and muon \(g-2\) from heavy vector-like leptons. J. Korean Phys. Soc. 79, 1121–1134 (2021). https://doi.org/10.1007/s40042-021-00339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00339-0

Keywords

Navigation