Skip to main content
Log in

Metaplectic operator approach to a time-dependent generalized harmonic oscillator

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The metaplectic operator is a unitary operator corresponding to a time-dependent classical linear canonical transformation. We present the explicit expression for the metaplectic operator. The parameter in the metaplectic operator is expressed in terms of the solution of a classical time-dependent generalized harmonic oscillator. The time evolution operator, Lewis and Riesenfeld invariant, and the wave function of the time-dependent generalized harmonic oscillator are studied using the metaplectic operator, and the results are compared with those from other studies. The metaplectic operator method is a simpler method for studying the time-dependent generalized harmonic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Lewis, Phys. Rev. Lett. 18, 510 (1967)

    Article  ADS  Google Scholar 

  2. H.R. Lewis, J. Math. Phys. 9, 1976 (1968)

    Article  ADS  Google Scholar 

  3. J.-Y. Ji, J.K. Kim, S.P. Kim, Phys. Rev. A 51, 4268 (1995)

    Article  ADS  Google Scholar 

  4. J.-Y. Ji, J.K. Kim, S.P. Kim, K.-S. Soh, Phys. Rev. A 52, 3352 (1995)

    Article  ADS  Google Scholar 

  5. L.S. Brown, Phys. Rev. Lett. 66, 527 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Harari, Y. Ben-Aryeh, A. Mann, Phys. Rev. A 84, 062104 (2011)

    Article  ADS  Google Scholar 

  7. M.V. Berry, Proc. R. Soc. Lond. A. Math. Phys. Sci. 392, 45 (1984)

    ADS  Google Scholar 

  8. X.-C. Gao, J.-B. Xu, T.-Z. Qian, Phys. Rev. A 44, 7016 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  9. D.-Y. Song, Phys. Rev. Lett. 85, 1141 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. X.-B. Wang, L.C. Kwek, C.H. Oh, Phys. Rev. A 62, 032105 (2000)

    Article  ADS  Google Scholar 

  11. X.-C. Gao, J. Gao, T.-Z. Qian, J.-B. Xu, Phys. Rev. D 53, 4374 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. K.H. Cho, J.Y. Ji, S.P. Kim, C.H. Lee, J.Y. Ryu, Phys. Rev. D 56, 4916 (1997)

    Article  ADS  Google Scholar 

  13. B. Baseia, S.S. Mizrahi, M.H.Y. Moussa, Phys. Rev. A 46, 5885 (1992)

    Article  ADS  Google Scholar 

  14. H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969)

    Article  ADS  Google Scholar 

  15. J.-Y. Ji, J.K. Kim, Phys. Rev. A 53, 703 (1996)

    Article  ADS  Google Scholar 

  16. J.-Y. Ji, J. Hong, J. Phys. A Math. Gen. 31, L689 (1998)

    Article  Google Scholar 

  17. I.A. Pedrosa, Phys. Rev. A 55, 3219 (1997)

    Article  ADS  Google Scholar 

  18. S.P. Kim, J. Korean Phys. Soc. 43, 11 (2003)

    Google Scholar 

  19. F.-L. Li, S.J. Wang, A. Weiguny, D.L. Lin, J. Phys. A Math. Gen. 27, 985 (1994)

    Article  ADS  Google Scholar 

  20. M. Maamache, J. Math. Phys. 39, 161 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  21. D.-Y. Song, J. Phys. A Math. Gen. 32, 3449 (1999)

    Article  ADS  Google Scholar 

  22. D.-Y. Song, Phys. Rev. A 62, 014103 (2000)

    Article  ADS  Google Scholar 

  23. A.N. Seleznyova, Phys. Rev. A 51, 950 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  24. D.-Y. Song, Phys. Rev. A 68, 012108 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  25. R.G. Littlejohn, Phys. Rep. 138, 193 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Ogura, J. Mod. Phys. 7, 2295 (2016)

    Google Scholar 

  27. K. Meyer, D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences (Springer International Publishing, Springer, 2017)

    Book  Google Scholar 

  28. D.H. Sattinger, O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics (Springer, New York, 1986)

    Book  Google Scholar 

  29. M. de Gosson, Symplectic Geometry and Quantum Mechanics. Advances and Applications Operator Theory (Birkhäuser, Basel, 2006)

    MATH  Google Scholar 

  30. I.A. Pedrosa, Phys. Rev. A 55, 3219 (1997)

    Article  ADS  Google Scholar 

  31. F. Salmistraro, R. Rosso, J. Math. Phys. 34, 3964 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  32. R.M. Wilcox, J. Math. Phys. 8, 962 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Kumoh National Institute of Technology (2019104035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We will prove that the unitary operator \({\hat{M}}(t)\) satisfies the time-dependent Schrödinger equation, Eq. (31). To prove it, we will use the formula for the derivative of an exponential operator given by in the following form [32]:

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t} e^{ {\hat{X}}(t)}= & {} \left[ \int _0^1 e^{ s {\hat{X}}(t) } \frac{\mathrm{{d}}{\hat{X}}(t)}{\mathrm{{d}}t} e^{ -s {\hat{X}}(t)} \mathrm{{d}}s \right] e^{ {\hat{X}}(t)} \end{aligned}$$
(54)

for an time-dependent operator \({\hat{X}}(t)\). Taking \({\hat{X}}(t)\) as \({\hat{X}}(t) = -i \frac{1}{2} {\hat{z}}^\mathrm{{T}} W {\hat{z}}\) in Eq. (54) leads to

$$\begin{aligned} \frac{\mathrm{{d}}{\hat{M}}(t)}{\mathrm{{d}}t}= & {} \int _0^1 \mathrm{{d}}s \left[ e^{ -is \frac{1}{2} {\hat{z}}^\mathrm{{T}} W {\hat{z}}} \left( -i \frac{1}{2} {\hat{z}}^\mathrm{{T}} \frac{\mathrm{{d}}W}{\mathrm{{d}}t} {\hat{z}}\right) e^{ +is \frac{1}{2} {\hat{z}}^\mathrm{{T}} W {\hat{z}}} \right] {\hat{M}}(t) \nonumber \\= & {} -i \frac{1}{2} \int _0^1 \mathrm{{d}}s \Big [ e^{-sJW} {\hat{z}}\Big ]^\mathrm{{T}} \frac{\mathrm{{d}}W}{\mathrm{{d}}t} \Big [ e^{-sJW} {\hat{z}}\Big ] {\hat{M}}(t) , \end{aligned}$$
(55)

where \( e^{-is \frac{1}{2} {\hat{z}}^\mathrm{{T}} W {\hat{z}}} {\hat{z}}_\mu e^{+is \frac{1}{2} {\hat{z}}^\mathrm{{T}} W {\hat{z}}} = (e^{-sJW} {\hat{z}})_\mu \) is used. Using that \([ e^{-sJW} ]^\mathrm{{T}} = e^{sJ^\mathrm{{T}}JWJ} = J^\mathrm{{T}} e^{sJW} J\) for a symmetric matrix W, we can write Eq. (55) as

$$\begin{aligned} \frac{\mathrm{{d}}{\hat{M}}(t)}{\mathrm{{d}}t} {\hat{M}}^\dagger (t)= & {} -i \frac{1}{2} {\hat{z}}^\mathrm{{T}} J^\mathrm{{T}} \int _0^1 \mathrm{{d}}s \Big [ e^{sJW} \frac{\mathrm{{d}}(JW)}{\mathrm{{d}}t} e^{-sJW} \Big ] {\hat{z}}. \end{aligned}$$
(56)

Now, we apply the relation in Eq. (54) to the derivative of \(e^{JW}\) with respect to time t, and get the relation

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t} e^{JW} = \left[ \int _0^1 \Big [ e^{sJW} \frac{\mathrm{{d}}(JW)}{\mathrm{{d}}t} e^{-sJW} \Big ] \mathrm{{d}}s \right] e^{JW}, \end{aligned}$$
(57)

which is the form in Eq. (56). Therefore, using that \( e^{JW(t)} = S(t)\) and \(\frac{\mathrm{{d}}S(t)}{\mathrm{{d}}t} = Jh(t)S(t)\), we obtain

$$\begin{aligned} \frac{\mathrm{{d}}{\hat{M}}(t)}{\mathrm{{d}}t} {\hat{M}}^\dagger (t)= & {} -i \frac{1}{2} {\hat{z}}^\mathrm{{T}} J^\mathrm{{T}} \left( \frac{\mathrm{{d}}}{\mathrm{{d}}t} e^{JW} \right) e^{-JW} {\hat{z}}\nonumber \\= & {} -i \frac{1}{2} {\hat{z}}^\mathrm{{T}} J^\mathrm{{T}} \left( \frac{\mathrm{{d}}S}{\mathrm{{d}}t} \right) S^{-1} {\hat{z}}\nonumber \\= & {} -i \frac{1}{2} {\hat{z}}^\mathrm{{T}} h(t) {\hat{z}}. \end{aligned}$$
(58)

Thus, time derivative of \({\hat{M}}(t)\) satisfies the time-dependent Schrödinger equation (TDSE)

$$\begin{aligned} i \frac{\partial }{\partial t}{\hat{M}}(t) = {\hat{H}}(t) {\hat{M}}(t), \end{aligned}$$
(59)

where \({\hat{H}}(t) = \frac{1}{2} {\hat{z}}^\mathrm{{T}} h(t) {\hat{z}}\). For the case that the unitary operator \({\hat{M}}(t)\) is expressed in three terms as in Eq. (13), we can also show that \({\hat{M}}(t) = {\hat{U}}_l(t) {\hat{U}}_d(t) {\hat{U}}_r(t)\) satisfies the TDSE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MH. Metaplectic operator approach to a time-dependent generalized harmonic oscillator. J. Korean Phys. Soc. 80, 95–101 (2022). https://doi.org/10.1007/s40042-021-00331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00331-8

Keywords

Navigation