Skip to main content
Log in

Asymmetric field dependence of the specific heat of the three-state Potts model on a square lattice

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Even in zero magnetic field, the exact solution of the three-state Potts model on a square lattice has never been obtained. Also, the properties of the three-state Potts model on a square lattice are little known for nonzero magnetic field. Unlike the Ising model which follows the Lee–Yang circle theorem and is symmetric under an external magnetic field, the three-state Potts model violates the circle theorem, and its properties in an external magnetic field are asymmetric for positive and negative external magnetic fields. The Wang–Landau sampling method is applied to estimate the unknown density of states \(g(\varepsilon ,\mu )\) as a function of the microscopic energy \(\varepsilon \) and the microscopic magnetization \(\mu \) for the three-state Potts model on a square lattice in an external magnetic field. Based on the estimated density of states, the properties of the asymmetric field dependence of the specific heat for the three-state Potts model on a square lattice are studied in an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor and Francis, London, 1996)

    Book  Google Scholar 

  2. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.H. Krieger, Constitutions of Matter: Mathematically Modeling the Most Everyday of Physical Phenomena (The University of Chicago Press, Chicago, 1996)

    MATH  Google Scholar 

  4. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)

    Article  ADS  Google Scholar 

  5. P.P. Martin, Potts Models and Related Problems in Statistical Mechanics (World Scientific, Singapore, 1991)

    Book  Google Scholar 

  6. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover Publications, New York, 2007)

    MATH  Google Scholar 

  7. S.-Y. Kim, R.J. Creswick, Phys. Rev. E 58, 7006 (1998)

    Article  ADS  Google Scholar 

  8. C. Bonati, M. D’Elia, Phys. Rev. D 82, 114515 (2010)

    Article  ADS  Google Scholar 

  9. Z. Glumac, K. Uzelac, Phys. Rev. E 87, 022140 (2013)

    Article  ADS  Google Scholar 

  10. T. Nagai, Y. Okamoto, W. Janke, Condens. Matter Phys. 16, 23605 (2013)

    Article  Google Scholar 

  11. S.-Y. Kim, W. Kwak, J. Korean Phys. Soc. 77, 630 (2020)

    Article  ADS  Google Scholar 

  12. T.D. Lee, C.N. Yang, Phys. Rev. 87, 410 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  13. R.J. Creswick, S.-Y. Kim, Phys. Rev. E 56, 2418 (1997)

    Article  ADS  Google Scholar 

  14. S.-Y. Kim, Phys. Rev. E 74, 011119 (2006)

    Article  ADS  Google Scholar 

  15. S.-Y. Kim, W. Kwak, J. Korean Phys. Soc. 73, 547 (2018)

    Article  ADS  Google Scholar 

  16. S.-Y. Kim, J. Korean Phys. Soc. 77, 271 (2020)

    Article  ADS  Google Scholar 

  17. S.-Y. Kim, R.J. Creswick, Phys. Rev. Lett 81, 2000 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. S.-Y. Kim, R.J. Creswick, Phys. A 281, 252 (2000)

    Article  Google Scholar 

  19. S.-Y. Kim, Nucl. Phys. B 637, 409 (2002)

    Article  ADS  Google Scholar 

  20. G. Bhanot, R. Salvador, S. Black, P. Carter, R. Toral, Phys. Rev. Lett. 59, 803 (1987)

    Article  ADS  Google Scholar 

  21. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  22. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  23. J.H. Lee, H. S. Song, J.M. Kim, S.-Y. Kim, J. Stat. Mech. 2010, P03020 (2010)

    Google Scholar 

  24. J.-S. Yang, W. Kwak, Comput. Phys. Comm. 181, 99 (2010)

    Article  ADS  Google Scholar 

  25. S. Ryu, W. Kwak, J. Korean Phys. Soc. 62, 559 (2013)

    Article  ADS  Google Scholar 

  26. S.-Y. Kim, J. Korean Phys. Soc. 70, 561 (2017)

    Article  ADS  Google Scholar 

  27. M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics, 7th edn. (McGraw-Hill, New York, 1997)

    Google Scholar 

  28. H.B. Callen, Thermodynaics and an Introduction to Thermostatistics, 2nd edn. (John Willey and Sons, New York, 1985)

    MATH  Google Scholar 

  29. C. Garrod, Statistical Mechanics and Thermodynamics (Oxford University Press, New York, 1995)

    Google Scholar 

  30. D.L. Goodstein, States of Matter (Dover Publications, New York, 1985)

    Google Scholar 

  31. E.S.R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966)

    Book  Google Scholar 

  32. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number: NRF-2017R1D1A3B06035840) for Seung-Yeon Kim and by the Korea government (MSIT) (No. 2020R1A2C1003743) for Wooseop Kwak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooseop Kwak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Kwak, W. Asymmetric field dependence of the specific heat of the three-state Potts model on a square lattice. J. Korean Phys. Soc. 79, 1114–1120 (2021). https://doi.org/10.1007/s40042-021-00327-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00327-4

Keywords

Navigation