Skip to main content
Log in

Band gap engineering of 2D biphenylene carbon sheets with hydrogenation

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A new 2D material of biphenylene sp2-bybridized carbon sheet, a nonbenzenoid carbon allotrope, has been discovered. Using first-principles calculations, we report electronic properties of the 2D biphenylene carbon sheet (BCS) with hydrogenation using first-principles calculations. We found that hydrogen atoms adsorb on carbon atoms in square, hexagon, and octagon, to form sp3 hybridized bonds. Carbon atoms are in energy preferred to be adsorbed on carbon atoms in square while carbon atoms, which is in a contrast to graphene that have all identical sites. We also found that the band gaps of BCS can vary by from 0 to 4.24 eV as the concentration of hydrogens increases. Unlike graphene where hydrogen atoms show a tendency to cluster, hydrogen atoms are energetically dispersed in BCS, making band gap tuning feasible. These electronic properties in BCS indicate that the band gap of BCS by employing hydrogenation can be engineered for new device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Fan, L. Yan, M.R. Trip, O. Krejci, S. Dimosthenous, S.R. Kachel, M. Chen, A. Foster, P. Liljeroth, J.M. Gottfried, Biphenylene network: a nonbenzenoid carbon allotrope. Science 372, 852–856 (2021)

    Article  ADS  Google Scholar 

  2. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  ADS  Google Scholar 

  3. Y. Lin, F. Ding, B.I. Yakobson, Hydrogen storage by spillover on graphene as a phase nucleation process. Phys. Rev. B 78, 041402 (2008)

    Article  ADS  Google Scholar 

  4. H. Gao, L. Wang, J. Zhao, F. Ding, J. Lu, Band gap tuning of hydrogenated graphene: H coverage and configuration dependence. J. Phys. Chem. C 115, 3236–3242 (2011)

    Article  Google Scholar 

  5. H. Xiang, E. Kan, S.-H. Wei, M.-H. Whangbo, J. Yang, “Narrow” graphene nanoribbons made easier by partial hydrogenation. Nano Lett. 9, 4025–4030 (2009)

    Article  ADS  Google Scholar 

  6. S.S. Han, H. Jung, D.H. Jung, S.-H. Choi, N. Park, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. Phys. Rev. B 85, 155408 (2012)

    Article  ADS  Google Scholar 

  7. Y. Li, R.T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006)

    Article  Google Scholar 

  8. R.H. Baughman, H. Eckhardt, M. Kertesz, Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687–6699 (1987)

    Article  ADS  Google Scholar 

  9. D. Malko, C. Neiss, F. Vines, A. Gorling, Competition for graphene: graphynes with direction-dependent dirac cones. Phys. Rev. Lett. 108, 086804 (2012)

    Article  ADS  Google Scholar 

  10. V.R. Coluci, S.F. Braga, D.S. Galvao, R.H. Baughman, New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15, S142–S149 (2004)

    Article  Google Scholar 

  11. N. Narita, S. Nagai, S. Suzuki, K. Nakao, Optimized geometries and electronic structures of graphyne and its family. Phys. Rev. B 58, 11009 (1998)

    Article  ADS  Google Scholar 

  12. B.G. Kim, H.J. Choi, Graphyne: hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 86, 115435 (2012)

    Article  ADS  Google Scholar 

  13. J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J. Phys. Chem. C 115, 20466–20470 (2011)

    Article  Google Scholar 

  14. C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, S.G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 4, 213–217 (2008)

    Article  Google Scholar 

  15. C.-H. Park, Y.-W. Son, L. Yang, M.L. Cohen, S.G. Louie, Electron beam supercollimation in graphene superlattices. Nano Lett. 9, 2920–2924 (2008)

    Article  ADS  Google Scholar 

  16. J.M. Kehoe, J.H. Kiley, J.J. English, C.A. Johnson, R.C. Petersen, M.M. Haley, Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org. Lett. 2, 969–972 (2000)

    Article  Google Scholar 

  17. T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R.V. Williams, Synthesis and properties of trefoil-shaped Tris(hexadehydrotribenzo[12]annulene) and Tris(tetradehydrotribenzo[12]annulene). Org. Lett. 8, 2933–2936 (2006)

    Article  Google Scholar 

  18. A.C. Johnson, Y. Lu, M.M. Haley, Carbon networks based on benzocyclynes. 6. Synthesis of graphyne substructures via directed alkyne metathesis. Org. Lett. 9, 3725–3728 (2007)

    Article  Google Scholar 

  19. G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, D.B. Zhu, Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010)

    Article  Google Scholar 

  20. M.M. Haley, S.C. Brand, J.J. Park, Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. 36, 835–838 (1997)

    Article  Google Scholar 

  21. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Special points for brillonin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Bafekry, M. Faraji, M.M. Fadlallah, H.R. Jappor, S. Karbasizadeh, M. Gherherehchi, D. Gogova, Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principle study. arXiv::2105.14958.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant (No. 2021R1A5A103299611) funded by the Ministry of Science, ICT and Future Planning (MSIP) of the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoonkyung Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Singh, A. & Lee, H. Band gap engineering of 2D biphenylene carbon sheets with hydrogenation. J. Korean Phys. Soc. 79, 846–850 (2021). https://doi.org/10.1007/s40042-021-00312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00312-x

Keywords

Navigation