Skip to main content
Log in

A neural network model based on the cortical modularity

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Although the individual cortical areas in the brain support very diverse functions, their anatomical organizations are very similar, given by collections of cortical blocks with nearly the same structure. This character suggests that statistical dynamics in the brain may be modeled much efficiently if interactions between the cortical blocks and learning in them are described through effective reduction. This paper introduces a neural network model based on the cortical modularity. Specifically, in building the model, we postulate on how cortical blocks function and interact with each other and adopt the formalism of path-integral-based interactions and free-energy-based learning. We apply the model to explain the characteristics observed in early visual systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.B. Mountcastle, J. Neurophysiol. 20, 408 (1957)

    Article  Google Scholar 

  2. J. Szentagothai, Brain Res. 95, 47596 (1975)

    Article  Google Scholar 

  3. N.V. Swindale, Trends Neurosci. 13, 48792 (1990)

    Article  Google Scholar 

  4. D. Purves, D.R. Riddle, A.S. LaMantia, Trends Neurosci. 15, 362 (1992)

    Article  Google Scholar 

  5. V.B. Mountcastle, Brain 120, 70122 (1997)

    Article  Google Scholar 

  6. G.D. Field, E.J. Chichilnisky, Annu. Rev. Neurosci. 30, 1 (2007)

    Article  Google Scholar 

  7. J.B. Troy, T. Shou, Prog. Retin. Eye Res. 21, 263 (2002)

    Article  Google Scholar 

  8. M. Meister, M.J. Berry II., Neuron 22, 435 (1999)

    Article  Google Scholar 

  9. R.W. Rodieck, Vis. Res. 5, 583 (1965)

    Article  Google Scholar 

  10. M. Sakuranaga, K. Naka, Neurophysiology 53, 411 (1985)

    Article  Google Scholar 

  11. J.D. Victor, J. Physiol. 386, 219 (1987)

    Article  Google Scholar 

  12. T. Gollisch, M. Meister, Biol. Cybern. 99, 263 (2008)

    Article  Google Scholar 

  13. P. Dayan, L.F. Abbott, Theoretical Neuroscience (MIT Press, London, 2001)

    MATH  Google Scholar 

  14. W. Gerstner, W.M. Kistler, Spiking Neuron Models (Cambridge University Press, New York, 2002)

    Book  MATH  Google Scholar 

  15. W. Gerstner, W.M. Kistler, R. Naud, Neuronal Dynamics (Cambridge University Press, New York, 2014)

    Book  Google Scholar 

  16. G.L. Geistein, N.Y.-S. Kiang, Biophys. J. 1, 15 (1960)

    Article  Google Scholar 

  17. M.W. Cho, M.Y. Choi, Neural Netw. 49, 51 (2014)

    Article  Google Scholar 

  18. M.W. Cho, M.Y. Choi, Europhys. Lett. 115, 38001 (2016)

    Article  ADS  Google Scholar 

  19. M.W. Cho, J. Korean Phys. Soc. 71, 222 (2017)

    Article  ADS  Google Scholar 

  20. M.W. Cho, J. Korean Phys. Soc. 73, 1385 (2018)

    Article  ADS  Google Scholar 

  21. M.W. Cho, J. Korean Phys. Soc. 75, 261 (2019)

    Article  ADS  Google Scholar 

  22. M.W. Cho, J. Korean Phys. Soc. 79, 328 (2021)

    Article  ADS  Google Scholar 

  23. M.W. Cho, New Phys. Sae Mulli 66, 786 (2016)

    Article  Google Scholar 

  24. M.W. Cho, J. Korean Phys. Soc. 74, 63 (2019)

    Article  ADS  Google Scholar 

  25. M.W. Cho, New Phys. Sae Mulli 69, 874 (2019)

    Article  Google Scholar 

  26. M.W. Cho, New Phys. Sae Mulli 64, 659 (2014)

    Article  Google Scholar 

  27. D. Martin, Manifold Theory: An Introduction for Mathematical Physicists (Ellis Horwood, Chichester, 1991)

    MATH  Google Scholar 

  28. M.W. Cho, S. Kim, Phys. Rev. Lett. 94, 68701 (2005)

    Article  ADS  Google Scholar 

  29. A.-L. Barabasi, R. Albert, Science 286, 590 (1999)

    Article  MathSciNet  Google Scholar 

  30. M.W. Cho, M.Y. Choi, Europhys. Lett. 101, 48004 (2013)

    Article  ADS  Google Scholar 

  31. D.W. Arnett, Exp. Brain Res. 32, 49 (1978)

    Article  Google Scholar 

  32. M. Meister, L. Lagnado, D.A. Baylor, Science 270, 1207 (1995)

    Article  ADS  Google Scholar 

  33. D.N. Mastronarde, Trends Neurosci. 12, 75 (1989)

    Article  Google Scholar 

  34. E.A. Mukamel, M.J. Schnitzer, Neuron 46, 357 (2005)

    Article  Google Scholar 

  35. H.B. Barlow, Possible principles underlying the transformation of sensory message, in em Sensory communication. ed. by W.A. Rosenblith (MIT Press, Cambridge, 1961), pp. 217–234

    Google Scholar 

  36. M. Meister, Proc. Natl. Acad. Sci. USA 93, 609–614 (1996)

    Article  ADS  Google Scholar 

  37. D. Marr, E. Hildreth, Proc. R. Soc. B 207, 187 (1980)

    ADS  Google Scholar 

  38. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  39. A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms, and Applications (Wiley, New York, 1999)

    MATH  Google Scholar 

  40. T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, Berlin, 1984)

    MATH  Google Scholar 

  41. M.W. Cho, J. Korean Phys. Soc. 67, 1661 (2015)

    Article  ADS  Google Scholar 

  42. M.W. Cho, M.Y. Choi, Neural Netw. 31, 46 (2012)

    Article  Google Scholar 

  43. M.W. Cho, M.Y. Choi, J. Korean Phys. Soc. 55, 2532 (2009)

    Article  ADS  Google Scholar 

  44. M.W. Cho, S. Kim, Phys. Rev. Lett. 92, 18101 (2004)

    Article  ADS  Google Scholar 

  45. K.-M. Lee, E.L. Keller, J. Neurosci. 28, 2242 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sungshin Women’s University Research Grant of 2019-1-82-016/1. M.Y.C. also acknowledges the support from the National Research Foundation of Korea through the Basic Science Research Program (Grant No. 2019R1F1A1046285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung Won Cho or M. Y. Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.W., Choi, M.Y. A neural network model based on the cortical modularity. J. Korean Phys. Soc. 79, 772–784 (2021). https://doi.org/10.1007/s40042-021-00301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00301-0

Keywords

Navigation