Skip to main content
Log in

Effects of scattering particles on the color rendering and color dispersion of white light-emitting diodes studied by optical simulation

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The effects of scattering particles on the color properties of conventional and quantum dot-embedded white light-emitting diodes (LEDs) were investigated by using optical simulation. The inclusion of red quantum dot particles in the conventional white LEDs consisting of blue LED chips and yellow phosphors improved the color-rendering properties significantly due to the enhanced deep red components. The scattering particles embedded in the resin induced multiple scattering and contributed to the color conversion of phosphors and quantum dots, which became more substantial as the difference in the refractive index between the resin and the scattering particles increased. This study showed that adopting scattering particles is an efficient way to change the correlated color temperature in a wide range and remove the color dispersion of conventional white LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, H. Luo, J.-Q. Xi, Rep. Prog. Phys. 69, 3069 (2006)

    Article  ADS  Google Scholar 

  2. A.I. Zhmakin, Phys. Rep. 498, 189 (2011)

    Article  ADS  Google Scholar 

  3. T. Taki, M. Strassbug, ECS J. Solid State Sci. Tech. 9, 015017 (2020)

    Article  ADS  Google Scholar 

  4. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, Opt. Mater. 33, 688 (2011)

    Article  ADS  Google Scholar 

  5. H.-W. Choi, J.-H. Ko, Korean J. Opt. Photon. 24, 64 (2013)

    Article  Google Scholar 

  6. C.-C. Yang, C.-L. Chang, K.-C. Huang, T.-S. Liao, Phys. Procedia 19, 182 (2011)

    Article  ADS  Google Scholar 

  7. C.C. Lin, A. Meijerink, R.-S. Liu, J. Phys. Chem. Lett. 7, 495 (2016)

    Article  Google Scholar 

  8. W.-L. Wu, M.-H. Fang, W. Zhou, T. Lesniewski, S. Mahlik, M. Grinberg, M.G. Brik, H.-S. Sheu, B.-M. Cheng, J. Wang, R.-S. Liu, Chem. Mater. 29, 935 (2017)

    Article  Google Scholar 

  9. D. Luo, L. Wang, S.W. Or, H. Zhang, R.-J. Xie, RSC Adv. 7, 25964 (2017)

    Article  ADS  Google Scholar 

  10. M. Kim, W.B. Park, B. Bang, C.H. Kim, K.-S. Sohn, J. Mater. Chem. C. 3, 5484 (2015)

    Article  Google Scholar 

  11. D.Y. Jeong, J. Ju, D.H. Kim, New. Phys.: Sae Mulli 66, 311 (2016)

    Google Scholar 

  12. S. Nizamoglu, T. Erdem, X.W. Sun, H.V. Demir, Opt. Lett. 35, 3372 (2010)

    Article  ADS  Google Scholar 

  13. K.A. Dnault, A.A. Mikhailovsky, S. Brinkley, S.P. DenBaars, R. Seshadri, J. Mater. Chem. C 1, 1461 (2013)

    Article  Google Scholar 

  14. D.-Y. Jo, H. Yang, J. Lumin. 166, 227 (2015)

    Article  Google Scholar 

  15. S.-R. Chung, S.-S. Chen, K.-W. Wang, C.-B. Siao, RSC Adv. 6, 51989 (2016)

    Article  ADS  Google Scholar 

  16. H.C. Yoon, J.H. Oh, S. Lee, J.B. Park, Y.R. Do, Sci. Rep. 7, 2808 (2017)

    Article  ADS  Google Scholar 

  17. S.J. Kim, H.W. Jang, J.-G. Lee, J.-H. Ko, Y.W. Ko, Y. Kim, New. Phys.: Sae Mulli 69, 861 (2019)

    Google Scholar 

  18. S.C. Hong, J. Baek, H. Lee, G.J. Lee, J.-G. Lee, J.-H. Ko, Y.W. Ko, Y. Kim, T. Park, New. Phys.: Sae Mulli 70, 698 (2020)

    Google Scholar 

  19. J.-G. Lee, G.J. Lee, S.C. Hong, J.-H. Ko, T. Park, Y.W. Ko, J. Korean Phys. Soc. 78, 822 (2021)

    Article  ADS  Google Scholar 

  20. H.-C. Chen, K.-J. Chen, C.-C. Lin, C.-H. Wang, H.-V. Han et al., Nanotechnology 23, 265201 (2012)

    Article  ADS  Google Scholar 

  21. K.-J. Chen, H.-V. Han, H.-C. Chen, C.-C. Lin, S.-H. Chien et al., Nanoscale 6, 5378 (2014)

    Article  ADS  Google Scholar 

  22. J.Y. Kim, H.-R. Kim, G.J. Lee, S.C. Hong, J.-G. Lee, J.-H. Ko, New Phys.: Sae Mulli 71, 210 (2021)

    Google Scholar 

  23. L. Rao, Y. Tang, Z.T. Li, X. Ding, J. Li et al., Opt. Express 25, A432 (2017)

    Article  ADS  Google Scholar 

  24. Y.-F. Chou, C.-F. Chen, S.-P. Ying, Y.-Y. Yeh, Appl. Sci. 9, 675 (2019)

    Article  Google Scholar 

  25. C.-C. Lee, S.-Y. Hsiao, W. Fang, J. Micromech. Microeng. 20, 085015 (2010)

    Article  ADS  Google Scholar 

  26. C.-C. Lin, C.-Y. Kang, A. Verma, T. Wu, Y.-M. Pai et al., Nanomaterials 9, 1314 (2019)

    Article  Google Scholar 

  27. S. C. Hong, S. T. Gwak, S. Park, G. J. Lee, J.-G. Lee et al., Curr. Appl. Phys. (Accepted)

Download references

Acknowledgements

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the program of Smart Specialized Infrastructure Construction (No. P0013743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyeon Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16283 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.C., Ko, JH. Effects of scattering particles on the color rendering and color dispersion of white light-emitting diodes studied by optical simulation. J. Korean Phys. Soc. 79, 631–637 (2021). https://doi.org/10.1007/s40042-021-00285-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00285-x

Keywords

Navigation