Skip to main content
Log in

A variational approach to irreversible thermodynamics

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We derived a general Onsager variational principle in an intuitive and simple manner. Our variational method is similar to the Gauss principle of least constraint rather than the principle of least action. Our result becomes the original Onsager principle if dissipation function is a quadratic function of fluxes and sources. Our result also agrees with previous thermodynamic theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publication, New York, 1962)

    MATH  Google Scholar 

  2. D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics (Springer-verlag, Berlin, 2010)

    Book  Google Scholar 

  3. S. Sieniutycz, Conservation Laws in Variational Thermo-Hydrodynamics (Kluwer Academic Pub., 1994)

  4. M. Grmela, J. Phys. Commun. 2, 032001 (2018)

  5. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  6. L. Onsager, Phys. Rev. 38, 2265 (1931)

    Article  ADS  Google Scholar 

  7. L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Machlup, L. Onsager, Phys. Rev. 91, 1512 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  9. M.A. Biot, Phys. Rev. 97, 1463 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Gyarmati, Non-Equilibrium Thermodynamics, Field Theory and Variational Principles (Springer-Verlag, Berlin, 1970)

    Book  Google Scholar 

  11. M.A. Sonnet, E.G. Virga, Phys. Rev. E 64, 031705 (2001)

    Article  ADS  Google Scholar 

  12. M. Doi, J. Phys. Condens. Matter 23, 284118 (2011)

    Article  Google Scholar 

  13. M. Doi, Soft Matter Physics (Oxford University Press, 2013)

  14. J. Verhás, Entropy 16, 2362 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. B.C. Eu, M. Ichiyanagi, Fortschritte der Phys. 44, 41 (1996)

    Article  ADS  Google Scholar 

  16. W.M. Deen, Analysis of Transport Phenomena (Oxford University Press, 1998)

  17. G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, 2013)

  18. K.S. Cho, Viscoelasticity of Polymers (Springer, Dordrecht, 2016)

    Book  Google Scholar 

  19. G.A. Maugin, W. Muschik, J. Non-Equilibrium Thermodyn. 19, 217 (1994)

    ADS  Google Scholar 

  20. G.A. Maugin, W. Muschik, J. Non-Equilibrium Thermodyn. 19, 250 (1994)

    ADS  Google Scholar 

  21. W.M. Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics (Elsevier, 2010)

  22. M. Doi, T. Ohta, J. Chem. Phys. 95, 1242 (1991)

    Article  ADS  Google Scholar 

  23. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Vol. 1: Fluid mechanics (John Wiley & Sons, 1987)

  24. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Article  ADS  Google Scholar 

  25. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  26. M.E. Gurtin, D. Polignone, J. Vinals, Math. Models Meth. Appl. Sci. 6, 815 (1996)

    Article  Google Scholar 

  27. D. Jasnow, J. Viñals, Phys. Fluids 8, 660 (1996)

    Article  ADS  Google Scholar 

  28. J. Lowengrub, L. Truskinovsky, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 454, 2617 (1998)

  29. D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, J. Kim, Comput. Mater. Sci. 81, 216 (2014)

    Article  Google Scholar 

  30. P. Ván, R. Kovács, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20190178 (2020)

  31. M. Grmela, H.C. Öttinger, Phys. Rev. E 56, 6620 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  32. B.D. Coleman, M.E. Gurtin, J. Chem. Phys. 47, 597 (1967)

    Article  ADS  Google Scholar 

  33. K.C. Valanis, Irreversible Thermodynamics of Continuous Media (Springer-Verlag, Berlin, 1971)

    Book  Google Scholar 

  34. A.I. Leonov, Rheol. Acta 15, 85 (1976)

    Article  Google Scholar 

  35. B.C. Eu, General Thermodynamics (Kluwer Academic Pub., 2002)

  36. A.N. Beris, B.J. Edwards, Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press, 1994)

  37. H.C. Öttinger, M. Grmela, Phys. Rev. E 56, 6633 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Lanczos, The Variational Principles of Mechanics (Dover Pub. Inc., New York, 1970)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mid-Career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R1I1A2A02063776). The author would like to thank Professor B. C. Eu (McGill University, Canada) and Professor Peter Daivies (RMIT University, Australia) for the discussions on irreversible thermodynamics and nonequilibrium statistical mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, K.S., Lee, J. A variational approach to irreversible thermodynamics. J. Korean Phys. Soc. 79, 230–241 (2021). https://doi.org/10.1007/s40042-021-00217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00217-9

Keywords

Navigation