Skip to main content
Log in

Cerebral hemorrhage detection and localization with medical imaging for cerebrovascular disease diagnosis and treatment using explainable deep learning

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Cerebral hemorrhages require rapid diagnosis and intensive treatment. This study aimed to detect cerebral hemorrhages and their locations in images using a deep learning model applying explainable deep learning. Normal brain images with no hemorrhages and images with subarachnoid, intraventricular, subdural, epidural, and intraparenchymal hemorrhages according to computed tomography (CT) (n = 200) were analyzed. A ResNet deep learning model, including image processing, was utilized. The visual explanation from a heatmap was made at the hemorrhage location using a gradient-class activation map (Grad-CAM). To evaluate the performance of the deep learning system, the accuracy, sensitivity, and specificity were determined. A hemorrhage prediction system for images of normal brains and brains with subarachnoid, intraventricular, subdural, epidural, and intraparenchymal hemorrhages was built. The Grad-CAM representation indicated the location of the hemorrhages in these images. In the prediction results, accurate predictions of the hemorrhage areas were made and visualizations of the corresponding locations overlapped in the images within (− 4, 1) pixel difference. The evaluation of the system performance showed an accuracy of 0.81 with a sensitivity of 0.67 and specificity of 0.86. These results constitue a proof of concept for the use of explainable artificial intelligence (XAI) to detect cerebral hemorrhages and visualize their locations in medical images, which will allow rapid diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.M. Rymer, Hemorrhagic stroke: intracerebral hemorrhage. Mo. Med 108(1), 50 (2011)

    Google Scholar 

  2. A. Morotti, J.N. Goldstein, Diagnosis and management of acute intracerebral hemorrhage. Emerg. Med. Clin. North Am. 34(4), 883 (2016)

    Article  Google Scholar 

  3. L. Afzali-Hashemi, M. Hazewinkel, M.C. Tjepkema-Cloostermans, M.J. Van Putten, C.H. Slump, Detection of small traumatic hemorrhages using a computer-generated average human brain CT. J. Med. Imaging 5(2), 024004 (2018)

    Article  Google Scholar 

  4. G. Alshumrani, A. Alzawani, A. Alsabaani, S. Shehata, A. Alhazzani, The role of computed tomography angiogram in intracranial hemorrhage. Do the benefits justify the known risks in everyday practice? Clin. Neurol. Neurosurg. 200, 106379 (2021)

    Article  Google Scholar 

  5. C.S. Kidwell, J.A. Chalela, J.L. Saver, S. Starkman, M.D. Hill, A.M. Demchuk et al., Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292(15), 1823–1830 (2004)

    Article  Google Scholar 

  6. J. Byun, D.H.L. Do Hoon Kwon, W. Park, J.C. Park, J.S. Ahn, Radiosurgery for cerebral arteriovenous malformation (AVM): current treatment strategy and radiosurgical technique for large cerebral AVM. J. Korean Neurosurg. Soc. 63(4), 415 (2020)

    Article  Google Scholar 

  7. H. Hasegawa, M. Yamamoto, M. Shin, B.E. Barfod, Gamma knife radiosurgery for brain vascular malformations: current evidence and future tasks. Ther. Clin. Risk Manag. 15, 1351 (2019)

    Article  Google Scholar 

  8. B.P. Walcott, J.A. Hattangadi-Gluth, C.J. Stapleton, C.S. Ogilvy, P.H. Chapman, J.S. Loeffler, Proton beam stereotactic radiosurgery for pediatric cerebral arteriovenous malformations. Neurosurgery 74(4), 367–374 (2014)

    Article  Google Scholar 

  9. M. Burduja, R.T. Ionescu, N. Verga, Accurate and efficient intracranial hemorrhage detection and subtype classification in 3D CT scans with convolutional and long short-term memory neural networks. Sensors. 20(19), 5611 (2020)

    Article  ADS  Google Scholar 

  10. W. Kuo, C. Hӓne, P. Mukherjee, J. Malik, E.L. Yuh, Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc. Natl. Acad. Sci. 116(45), 22737–22745 (2019)

    Article  Google Scholar 

  11. H. Ye, F. Gao, Y. Yin, D. Guo, P. Zhao, Y. Lu et al., Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur. Radiol. 29(11), 6191–6201 (2019)

    Article  Google Scholar 

  12. M.R. Arbabshirani, B.K. Fornwalt, G.J. Mongelluzzo, J.D. Suever, B.D. Geise, A.A. Patel et al., Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ. Digit. Med. 1(1), 1–7 (2018)

    Article  Google Scholar 

  13. A. Segato, A. Marzullo, F. Calimeri, E. De Momi, Artificial intelligence for brain diseases: a systematic review. APL Bioeng 4(4), 041503 (2020)

    Article  Google Scholar 

  14. P. Bentley, J. Ganesalingam, A.L.C. Jones, K. Mahady, S. Epton, P. Rinne et al., Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage 4, 635–640 (2014)

    Article  Google Scholar 

  15. V. Desai, A.E. Flanders, P. Lakhani, Application of deep learning in neuroradiology: automated detection of basal ganglia hemorrhage using 2D-convolutional neural networks. Comput. Intell. Neurosci. arXiv preprint 2017. arXiv:171003823

  16. L.A. Ramos, W.E. van der Steen, R.S. Barros, C.B. Majoie, R. van den Berg, D. Verbaan et al., Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage. J. Neurointervent. Surg. 11(5), 497–502 (2019)

    Article  Google Scholar 

  17. J. Cho, K.-S. Park, M. Karki, E. Lee, S. Ko, J.K. Kim et al., Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models. J. Digit. Imaging 32(3), 450–461 (2019)

    Article  Google Scholar 

  18. N. Mirchi, V. Bissonnette, R. Yilmaz, N. Ledwos, A. Winkler-Schwartz, R.F. Del Maestro, The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS ONE 15(2), e0229596 (2020)

    Article  Google Scholar 

  19. J.-M. Fellous, G. Sapiro, A. Rossi, H. Mayberg, M. Ferrante, Explainable artificial intelligence for neuroscience: behavioral neurostimulation. Front. Neurosci. 13, 1346 (2019)

    Article  Google Scholar 

  20. E. Zihni, V.I. Madai, M. Livne, I. Galinovic, A.A. Khalil, J.B. Fiebach et al., Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. PLoS ONE 15(4), e0231166 (2020)

    Article  Google Scholar 

  21. H. Panwar, P. Gupta, M.K. Siddiqui, R. Morales-Menendez, P. Bhardwaj, V. Singh, A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-scan images. Chaos Solitons Fractals 140, 110190 (2020)

    Article  MathSciNet  Google Scholar 

  22. C. Oh, J. Jeong, VODCA: verification of diagnosis using CAM-based approach for explainable process monitoring. Sensors. 20(23), 6858 (2020)

    Article  ADS  Google Scholar 

  23. T. He, J. Guo, N. Chen, X. Xu, Z. Wang, K. Fu et al., MediMLP: using grad-CAM to extract crucial variables for lung cancer postoperative complication prediction. IEEE J. Biomed. Health Inform. 24(6), 1762–1771 (2019)

    Article  Google Scholar 

  24. G. Cheng, J. Yang, D. Gao, L. Guo, J. Han, High-quality proposals for weakly supervised object detection. IEEE Trans. Image Process. 29, 5794–5804 (2020)

    Article  ADS  Google Scholar 

  25. M. Zhongqi, K.M. Gaynor, J. Wang, Z. Liu, M. Oliver, M.S. Norouzzadeh et al., Insights and approaches using deep learning to classify wildlife. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-44565-w

    Article  Google Scholar 

  26. A.E. Flanders, L.M. Prevedello, G. Shih, S.S. Halabi, J. Kalpathy-Cramer, R. Ball et al., Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology 2(3), e190211 (2020)

    Google Scholar 

  27. Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer, Fast deep neural network training on distributed systems and cloud tpus. IEEE Trans. Parallel Distrib. Syst. 30(11), 2449–2462 (2019)

    Article  Google Scholar 

  28. M. Rahimzadeh, A. Attar, A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform. Med. Unlocked 19, 100360 (2020)

    Article  Google Scholar 

  29. E. Kegeles, A. Naumov, E.A. Karpulevich, P. Volchkov, P. Baranov, Convolutional neural networks can predict retinal differentiation in retinal organoids. Front. Cell. Neurosci. 14, 171 (2020)

    Article  Google Scholar 

  30. M. Pedersen, M.B. Andersen, H. Christiansen, N.H. Azawi, Classification of renal tumour using convolutional neural networks to detect oncocytoma. Eur. J. Radiol. 133, 109343 (2020)

    Article  Google Scholar 

  31. P. Huang, X. Tan, C. Chen, X. Lv, Y. Li, AF-SENet: classification of cancer in cervical tissue pathological images based on fusing deep convolution features. Sensors 21(1), 122 (2021)

    Article  ADS  Google Scholar 

  32. D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.-Z. Yang, XA—explainable artificial intelligence. Sci. Robot 4(37), eaay7120 (2019)

    Article  Google Scholar 

  33. E. Tjoa, C. Guan, A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3027314

    Article  Google Scholar 

  34. C. Dai, Y. Fan, Y. Li, X. Bao, Y. Li, M. Su et al., Development and interpretation of multiple machine learning models for predicting postoperative delayed remission of acromegaly patients during long-term follow-up. Front. Endocrinol. (2020). https://doi.org/10.3389/fendo.2020.00643

    Article  Google Scholar 

  35. G. Liang, X. Wang, Y. Zhang, N. Jacobs, Weakly-supervised self-training for breast cancer localization. 2020 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC): IEEE, 2020, p 1124–1127

  36. J. Zhou, L.Y. Luo, Q. Dou, H. Chen, C. Chen, G.J. Li et al., Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. J. Magn. Reson. Imaging 50(4), 1144–1151 (2019)

    Article  Google Scholar 

  37. X. Ouyang, S. Karanam, Z. Wu, T. Chen, J. Huo, X.S. Zhou et al., Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis. IEEE Trans. Med. Imaging (2020). https://doi.org/10.1109/TMI.2020.304277

    Article  Google Scholar 

Download references

Acknowledgements

The dataset used in the present study was provided with the consent of Dr. Felipe Kitamura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Hyeon Kim.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Koo, HW., Lee, BJ. et al. Cerebral hemorrhage detection and localization with medical imaging for cerebrovascular disease diagnosis and treatment using explainable deep learning. J. Korean Phys. Soc. 79, 321–327 (2021). https://doi.org/10.1007/s40042-021-00202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00202-2

Keywords

Navigation