Skip to main content
Log in

Verification of thermal conductivity measurements using guarded hot plate and heat flow meter methods

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The guarded hot plate (GHP) and the heat flow meter (HFM) methods are two widely used techniques to measure the thermal conductivity (λ) of insulation specimens. In this study, the λ measurement of the two methods was validated using the certified reference material (CRM) IRMM-440 and an expanded polystyrene (EPS) board at temperatures from − 10 to 50 °C. The GHP apparatus was a commercially available apparatus for 300 mm × 300 mm specimens, and the HFM apparatus for 900 mm × 900 mm specimens was built in-house. The λ of the CRM measured using the GHP was within 2% of the certified λ value. Subsequently, the λ values of specimens of nominally identical EPS with 20 mm thicknesses were measured using both the GHP and the HFM methods. A comparison of the λ measurements showed that the two methods were consistent to within 3%. Finally, the λ values of EPS specimens of various thicknesses from 50 to 200 mm were measured using the HFM method. Although the specimens were nominally identical, values of λ for the specimens with thicknesses of 20−150 mm were increased by 0.09% mm−1 at − 10 °C and by 0.07% mm−1 at 10 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.M.I. Mahlia, B.N. Taufiq, H.H.M. Ismail, Energy Build. 39, 182 (2007). https://doi.org/10.1016/j.enbuild.2006.06.002

    Article  Google Scholar 

  2. J. Cha, J. Seo, S. Kim, J. Therm. Anal. Calorim. 109, 295 (2012). https://doi.org/10.1007/s10973-011-1760-x

    Article  Google Scholar 

  3. O. Kaynakli, Renew. Sustain. Energy Rev. 16, 415 (2012). https://doi.org/10.1016/j.rser.2011.08.006

    Article  Google Scholar 

  4. F. Asdrubali, F. D’Alessandro, S. Schiavoni, Sustain Mater. Technol. 4, 1 (2015). https://doi.org/10.1016/j.susmat.2015.05.002

    Article  Google Scholar 

  5. S. Schiavoni, F. D’Alessandro, F. Bianchi, F. Asdrubali, Renew. Sustain. Energy. Rev. 62, 988 (2016)

    Article  Google Scholar 

  6. R.R. Zarr, F.G. William, B. Hay, A. Koenen, Metrologia 54, 113 (2017). https://doi.org/10.1088/1681-7575/aa4e55

    Article  ADS  Google Scholar 

  7. B. Hay, R. Zarr, C. Stacey, N. Sokolov, L.L. Cortés, J. Zhang, U. Hammerschmidt, J.-R. Filtz, A. Allard, Metrologia 57, 03003 (2020). https://doi.org/10.1088/0026-1394/57/1A/03003

    Article  Google Scholar 

  8. S. Dubois, F. Lebeau, Mater. Struct. 48, 407 (2013). https://doi.org/10.1617/s11527-013-0192-4

    Article  Google Scholar 

  9. A. Schindler, G. Neumann, D. Stobitzer, S. Vidi, High Temp. High Press. 45, 81 (2016)

    Google Scholar 

  10. A.A. Abdou, I.M. Budaiwi, J. Build. Phys. 29, 171 (2005). https://doi.org/10.1177/1744259105056291

    Article  Google Scholar 

  11. G. Baldinelli, F. Bianchi, S. Gendelis, A. Jakovics, G.L. Morini, S. Falcioni, S. Fantucci, V. Serra, M.A. Navacerrada, C. Díaz, A. Libbra, A. Muscio, F. Asdrubali, Int. J. Therm. Sci. 139, 25 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.01.037

    Article  Google Scholar 

  12. I. Yang, D. Kim, S. Lee, H. Jang, Energy Build. 203, 109445 (2019). https://doi.org/10.1016/j.enbuild.2019.109445

    Article  Google Scholar 

  13. A. Quin, G. Venuti, F. de Ponte, A. Lamberty, Certification of a resin-bonded glass fiber board for thermal conductivity between −10 °C and +50 °C IRMM-440-EUR 19572 EN, ISBN 92-828-9638-2, Office for Official Publications of the European Communities, Luxembourg (2000)

  14. I. Gnip, S. Vėjelis, S. Vaitkus, Energy Build. 52, 107 (2012). https://doi.org/10.1016/j.enbuild.2012.05.029

    Article  Google Scholar 

  15. ISO (International Organization for Standardization) Building materials and products–hygrothermal properties–Tabulated design values and procedures for determining declared and design thermal values, Standards ISO 10456, ISO, Genève (2007)

  16. Á. Lakatos, J. Therm. Anal. Calorim. 46, 1101 (2018). https://doi.org/10.1007/s10973-017-6686-5

    Article  Google Scholar 

  17. Á. Lakatos, F. Kalmár, Mater. Struct. 46, 1101 (2013). https://doi.org/10.1617/s11527-012-9956-5

    Article  Google Scholar 

  18. ISO (International Organization for Standardization) Thermal insulation–determination of steady-state thermal resistance and related properties–heat flow meter apparatus, Standards ISO 8301, ISO, Genève (1991)

Download references

Acknowledgements

The authors would like to thank Hyunmin Jang (Korea Conformity Laboratories) for preparing and providing the specimen for the large-area HFM and letting us use the HFM apparatus. This work was supported by the Korea Research Institute of Standards and Science under the project “Establishment of National Physical Measurement Standards and Improvement of Calibration/Measurement Capability” (grant number 20011027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inseok Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, S. & Yang, I. Verification of thermal conductivity measurements using guarded hot plate and heat flow meter methods. J. Korean Phys. Soc. 78, 1196–1202 (2021). https://doi.org/10.1007/s40042-021-00177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00177-0

Keywords

Navigation