Skip to main content
Log in

Lattice and electronic properties of VO\(_2\) with the SCAN(+U) approach

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Appropriate consideration of the electron correlation is essential to reproduce the intriguing metal-insulator transition accompanying the Peierls-type structural transition in VO\(_2\). In the density functional theory-based approach, this depends on the choice of the exchange-correlation functional. Here, using a newly developed strongly constrained and appropriately norm (SCAN) functional, we investigate the lattice and electronic properties of the metallic rutile phase of VO\(_2\) (R-VO\(_2\)) from the first-principles calculations. We also explored the role of the Coulomb correlation U. By adding U, we found that the phonon instability properly describes the Peierls-type distortions. The orbital-decomposed density of states presents the orbital selective behavior with the SCAN+U, which is susceptible to the one-dimensional Peierls distortion. Our results suggest that even with the SCAN functional, the explicit inclusion of the Coulomb interaction is necessary to describe the structural transition of VO\(_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    Article  ADS  Google Scholar 

  2. J.B. Goodenough, Phys. Rev. 117, 1442 (1960)

    Article  ADS  Google Scholar 

  3. D.B. McWhan, M. Marezio, J.P. Remeika, P.D. Dernier, Phys. Rev. B 10, 490 (1974)

    Article  ADS  Google Scholar 

  4. J. Longo, P. Kierkegaard, Acta Chem. Scand. 24, 420 (1970)

    Article  Google Scholar 

  5. V. Eyert, Ann. der Phys. 11, 650 (2002)

    Article  ADS  Google Scholar 

  6. F. Pintchovski, W. Glaunsinger, A. Navrotsky, J. Phys. Chem. Solids 39, 941 (1978)

    Article  ADS  Google Scholar 

  7. S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, Phys. Rev. Lett. 94, 026404 (2005)

    Article  ADS  Google Scholar 

  8. B. Lazarovits, K. Kim, K. Haule, G. Kotliar, Phys. Rev. B 81, 115117 (2010)

    Article  ADS  Google Scholar 

  9. S. Kim, K. Kim, C.-J. Kang, B.I. Min, Phys. Rev. B 87, 195106 (2013)

    Article  ADS  Google Scholar 

  10. M.W. Haverkort et al., Phys. Rev. Lett. 95, 196404 (2005)

    Article  ADS  Google Scholar 

  11. A. Liebsch, H. Ishida, G. Bihlmayer, Phys. Rev. B 71, 085109 (2005)

    Article  ADS  Google Scholar 

  12. A. Continenza, S. Massidda, M. Posternak, Phys. Rev. B 60, 15699 (1999)

    Article  ADS  Google Scholar 

  13. M. Gatti, F. Bruneval, V. Olevano, L. Reining, Phys. Rev. Lett. 99, 266402 (2007)

    Article  ADS  Google Scholar 

  14. R. Sakuma, T. Miyake, F. Aryasetiawan, Phys. Rev. B 78, 075106 (2008)

    Article  ADS  Google Scholar 

  15. V. Eyert, Phys. Rev. Lett. 107, 016401 (2011)

    Article  ADS  Google Scholar 

  16. J.D. Budai et al., Nature 515, 535 (2014)

    Article  ADS  Google Scholar 

  17. J.M. Tomczak, F. Aryasetiawan, S. Biermann, Phys. Rev. B 78, 115103 (2008)

    Article  ADS  Google Scholar 

  18. A.S. Belozerov, M.A. Korotin, V.I. Anisimov, A.I. Poteryaev, Phys. Rev. B 85, 045109 (2012)

    Article  ADS  Google Scholar 

  19. T.A. Mellan, H. Wang, U. Schwingenschlögl, R. Grau-Crespo, Phys. Rev. B 99, 064113 (2019)

    Article  ADS  Google Scholar 

  20. S. Lee et al., Science 355, 371 (2017)

    Article  ADS  Google Scholar 

  21. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  22. J. Sun et al., Nat. Chem. 8, 831 (2016)

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. Y. Hinuma et al., Phys. Rev. B 96, 094102 (2017)

    Article  ADS  Google Scholar 

  25. Y. Zhang, J. Sun, J.P. Perdew, X. Wu, Phys. Rev. B 96, 035143 (2017)

    Article  ADS  Google Scholar 

  26. A. Chakraborty, M. Dixit, D. Aurbach, D.T. Major, npj Comput. Mater. 4, 60 (2018)

    Article  ADS  Google Scholar 

  27. J. Varignon, M. Bibes, A. Zunger, Nat. Commun. 10, 1658 (2019)

    Article  ADS  Google Scholar 

  28. Y. Zhang et al., npj Comput. Mater. 4, 9 (2018)

    Article  ADS  Google Scholar 

  29. E.B. Isaacs, S. Patel, C. Wolverton, Phys. Rev. Mater. 4, 065405 (2020)

    Article  Google Scholar 

  30. G. Sai Gautam, E.A. Carter, Phys. Rev. Mater. 2, 095401 (2018)

    Article  Google Scholar 

  31. O.Y. Long, G. Sai Gautam, E.A. Carter, Phys. Rev. Mater. 4, 045401 (2020)

    Article  Google Scholar 

  32. I. Kylänpää et al., Phys. Rev. Mater. 1, 065408 (2017)

    Article  Google Scholar 

  33. B. Stahl, T. Bredow, J. Comput. Chem. 41, 258 (2020)

    Article  Google Scholar 

  34. P. Ganesh et al., Phys. Rev. B 101, 155129 (2020)

    Article  ADS  Google Scholar 

  35. W. R. Mondal et al., arxiv:2008.08725

  36. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  37. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  38. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  39. A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)

    Article  ADS  Google Scholar 

  40. J.R. Brews, Phys. Rev. B 1, 2557 (1970)

    Article  ADS  Google Scholar 

  41. C.J. Hearn, J. Phys. C 5, 1317 (1972)

    Article  ADS  Google Scholar 

  42. H. Terauchi, J.B. Cohen, Phys. Rev. B 17, 2494 (1978)

    Article  ADS  Google Scholar 

  43. F. Gervais, W. Kress, Phys. Rev. B 31, 4809 (1985)

    Article  ADS  Google Scholar 

  44. H. Peng, Z.-H. Yang, J.P. Perdew, J. Sun, Phys. Rev. X 6, 041005 (2016)

    Google Scholar 

  45. J. Hermann, A. Tkatchenko, J. Chem. Theory Comput. 14, 1361 (2018)

    Article  Google Scholar 

  46. B. Kim, K. Kim, S. Kim, arxiv:2007.04652

Download references

Acknowledgements

We thank Bongjae Kim and Kyoo Kim for helpful discussion. This research was supported by Kyungpook National University Research Fund, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sooran Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S. Lattice and electronic properties of VO\(_2\) with the SCAN(+U) approach. J. Korean Phys. Soc. 78, 613–617 (2021). https://doi.org/10.1007/s40042-021-00125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00125-y

Keywords

Navigation