Skip to main content
Log in

Biophysical underpinnings regarding the formation and the regulation of biomolecular condensates

  • Review
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

For effective of orchestration of biochemical reactions that are optimized in different physicochemical environments, cells are evolved to carry various non-membranous biomolecular condensates in addition to conventional membrane-bound organelles. Recent studies have revealed that these biomolecular condensates are made up of proteins and RNAs of a specific character and are formed via liquid–liquid phase separation. Here, we review recent theoretical attempts trying to understand the biophysical principles underlying the formation and regulation of these intriguing structures. Comprehension of the biophysical underpinnings regarding the occurrence and the behavior of biomolecular condensates will make deeper insights into their biological functions possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.A. Riback, C.D. Katanski, J.L. Kear-Scott, E.V. Pilipenko, A.E. Rojek, T.R. Sosnick, D.A. Drummond, Cell 168, 1028 (2017)

    Article  Google Scholar 

  2. C. Iserman, C. Desroches Altamirano, C. Jegers, U. Friedrich, T. Zarin, A.W. Fritsch, M. Mittasch, A. Domingues, L. Hersemann, M. Jahnel, D. Richter, U.-P. Guenther, M.W. Hentze, A.M. Moses, A.A. Hyman, G. Kramer, M. Kreysing, T.M. Franzmann, S. Alberti, Cell 181, 818 (2020)

    Article  Google Scholar 

  3. J. Guillén-Boixet, A. Kopach, A.S. Holehouse, S. Wittmann, M. Jahnel, R. Schlüßler, K. Kim, I.R.E.A. Trussina, J. Wang, D. Mateju, I. Poser, S. Maharana, M. Ruer-Gruß, D. Richter, X. Zhang, Y.T. Chang, J. Guck, A. Honigmann, J. Mahamid, A.A. Hyman, R.V. Pappu, S. Alberti, T.M. Franzmann, Cell 181, 346 (2020)

    Article  Google Scholar 

  4. P. Yang, C. Mathieu, R.M. Kolaitis, P. Zhang, J. Messing, U. Yurtsever, Z. Yang, J. Wu, Y. Li, Q. Pan, J. Yu, E.W. Martin, T. Mittag, H.J. Kim, J.P. Taylor, Cell 181, 325 (2020)

    Article  Google Scholar 

  5. F. Wippich, B. Bodenmiller, M.G. Trajkovska, S. Wanka, R. Aebersold, L. Pelkmans, Cell 152, 791 (2013)

    Article  Google Scholar 

  6. J. Ayache, M. Bénard, M. Ernoult-Lange, N. Minshall, N. Standart, M. Kress, D. Weil, Mol. Biol. Cell 26, 2579 (2015)

    Article  Google Scholar 

  7. B.S. Rao, R. Parker, Proc. Natl. Acad. Sci. U.S.A. 114, E9569 (2017)

    Google Scholar 

  8. S.A. Fromm, J. Kamenz, E.R. Nöldeke, A. Neu, G. Zocher, R. Sprangers, Angew. Chemie Int. Ed. 53, 7354 (2014)

    Article  Google Scholar 

  9. L. Latonen, Front. Cell. Neurosci. 13, 1 (2019)

    Article  Google Scholar 

  10. C.P. Brangwynne, T.J. Mitchison, A.A. Hyman, Proc. Natl. Acad. Sci. U.S.A. 108, 4334 (2011)

    Article  ADS  Google Scholar 

  11. K.E. Handwerger, J.A. Cordero, J.G. Gall, Mol. Biol. Cell 16, 202 (2005)

    Article  Google Scholar 

  12. S. Contreras-Martos, A. Piai, S. Kosol, M. Varadi, A. Bekesi, P. Lebrun, A.N. Volkov, K. Gevaert, R. Pierattelli, I.C. Felli, P. Tompa, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  13. F.M. Boisvert, M.J. Kruhlak, A.K. Box, M.J. Hendzel, D.P. Bazett-Jones, J. Cell Biol. 152, 1099 (2001)

    Article  Google Scholar 

  14. S. Weidtkamp-Peters, T. Lenser, D. Negorev, N. Gerstner, T.G. Hofmann, G. Schwanitz, C. Hoischen, G. Maul, P. Dittrich, P. Hemmerich, J. Cell Sci. 121, 2731 (2008)

    Article  Google Scholar 

  15. L. Galganski, M.O. Urbanek, W.J. Krzyzosiak, Nucleic Acids Res. 45, 10350 (2017)

    Article  Google Scholar 

  16. Y. Lu, T. Wu, O. Gutman, H. Lu, Q. Zhou, Y.I. Henis, K. Luo, Nat. Cell Biol. 22, 453 (2020)

    Article  Google Scholar 

  17. B.R. Sabari, A. Dall’Agnese, A. Boija, I.A. Klein, E.L. Coffey, K. Shrinivas, B.J. Abraham, N.M. Hannett, A.V. Zamudio, J.C. Manteiga, C.H. Li, Y.E. Guo, D.S. Day, J. Schuijers, E. Vasile, S. Malik, D. Hnisz, T.I. Lee, I.I. Cisse, R.G. Roeder, P.A. Sharp, A.K. Chakraborty, R.A. Young, Science 361, 379 (2018)

    Article  Google Scholar 

  18. S. Elbaum-Garfinkle, Y. Kim, K. Szczepaniak, C.C.H. Chen, C.R. Eckmann, S. Myong, C.P. Brangwynne, Proc. Natl. Acad. Sci. U.S.A. 112, 7189 (2015)

    Article  ADS  Google Scholar 

  19. C.P. Brangwynne, C.R. Eckmann, D.S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher, A.A. Hyman, Science 324, 1729 (2009)

    Article  ADS  Google Scholar 

  20. S. Boeynaems, S. Alberti, N.L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, P. Tompa, M. Fuxreiter, Trends Cell Biol. 28, 420 (2018)

    Article  Google Scholar 

  21. S.F. Banani, H.O. Lee, A.A. Hyman, M.K. Rosen, Nat. Rev. Mol. Cell Biol. 18, 285 (2017)

    Article  Google Scholar 

  22. S. Banjade, M.K. Rosen, Elife 3, e04123 (2014)

    Article  Google Scholar 

  23. T.S. Harmon, A.S. Holehouse, M.K. Rosen, R.V. Pappu, Elife 6, 1 (2017)

    Google Scholar 

  24. A.E. Posey, A.S. Holehouse, R.V. Pappu, in Phase Separation of Intrinsically Disordered Proteins, Methods in Enzymology (Elsevier, 2018), vol. 611, pp. 1–30

  25. A.A. Hyman, C.A. Weber, F. Jülicher, Annu. Rev. Cell Dev. Biol. 30, 39 (2014)

    Article  Google Scholar 

  26. C.P. Brangwynne, Soft Matter 7, 3052 (2011)

    Article  ADS  Google Scholar 

  27. C.F. Lee, C.P. Brangwynne, J. Gharakhani, A.A. Hyman, F. Jülicher, Phys. Rev. Lett. 111, 1 (2013)

    Google Scholar 

  28. C.J. Oldfield, A.K. Dunker, Annu. Rev. Biochem. 83, 553 (2014)

    Article  Google Scholar 

  29. C.P. Brangwynne, P. Tompa, R.V. Pappu, Nat. Phys. 11, 899 (2015)

    Article  Google Scholar 

  30. J.T.G. Overbeek, M.J. Voorn, J. Cell. Comp. Physiol. 49, 7 (1957)

    Article  Google Scholar 

  31. R.W. Style, T. Sai, N. Fanelli, M. Ijavi, K. Smith-Mannschott, Q. Xu, L.A. Wilen, E.R. Dufresne, Phys. Rev. X 8, 11028 (2018)

    Google Scholar 

  32. K.A. Rosowski, T. Sai, E. Vidal-Henriquez, D. Zwicker, R.W. Style, E.R. Dufresne, Nat. Phys. 16, 422 (2020)

    Article  Google Scholar 

  33. A. Molliex, J. Temirov, J. Lee, M. Coughlin, A.P. Kanagaraj, H.J. Kim, T. Mittag, J.P. Taylor, Cell 163, 123 (2015)

    Article  Google Scholar 

  34. M. Zeng, Y. Shang, Y. Araki, T. Guo, R.L. Huganir, M. Zhang, Cell 166, 1163 (2016)

    Article  Google Scholar 

  35. X. Su, J.A. Ditlev, E. Hui, W. Xing, S. Banjade, J. Okrut, D.S. King, J. Taunton, M.K. Rosen, R.D. Vale, Science 352, 595 (2016)

    Article  ADS  Google Scholar 

  36. Y.I. Henis, B. Rotblat, Y. Kloog, Methods 40, 183 (2006)

    Article  Google Scholar 

  37. T.P. Dao, R.M. Kolaitis, H.J. Kim, K. O’Donovan, B. Martyniak, E. Colicino, H. Hehnly, J.P. Taylor, C.A. Castañeda, Mol. Cell 69, 965 (2018)

    Article  Google Scholar 

  38. N.O. Taylor, M.T. Wei, H.A. Stone, C.P. Brangwynne, Biophys. J. 117, 1285 (2019)

    Article  ADS  Google Scholar 

  39. Z. Wang, G. Zhang, H. Zhang, Biophys. Rep. 5, 1 (2019)

    Article  ADS  Google Scholar 

  40. G. Zhang, Z. Wang, Z. Du, H. Zhang, Cell 174, 1492 (2018)

    Article  Google Scholar 

  41. D.M. Mitrea, J.A. Cika, C.B. Stanley, A. Nourse, P.L. Onuchic, P.R. Banerjee, A.H. Phillips, C.G. Park, A.A. Deniz, R.W. Kriwacki, Nat. Commun. 9, 1 (2018)

    Article  ADS  Google Scholar 

  42. Z. Monahan, V.H. Ryan, A.M. Janke, K.A. Burke, S.N. Rhoads, G.H. Zerze, R. O’Meally, G.L. Dignon, A.E. Conicella, W. Zheng, R.B. Best, R.N. Cole, J. Mittal, F. Shewmaker, N.L. Fawzi, EMBO J. 36, 2951 (2017)

    Article  Google Scholar 

  43. J. Wang, J.M. Choi, A.S. Holehouse, H.O. Lee, X. Zhang, M. Jahnel, S. Maharana, R. Lemaitre, A. Pozniakovsky, D. Drechsel, I. Poser, R.V. Pappu, S. Alberti, A.A. Hyman, Cell 174, 688 (2018)

    Article  Google Scholar 

  44. V.N. Uversky, I.M. Kuznetsova, K.K. Turoverov, B. Zaslavsky, FEBS Lett. 589, 15 (2015)

    Article  Google Scholar 

  45. D.W. Sanders, N. Kedersha, D.S.W. Lee, A.R. Strom, V. Drake, J.A. Riback, D. Bracha, J.M. Eeftens, A. Iwanicki, A. Wang, M.T. Wei, G. Whitney, S.M. Lyons, P. Anderson, W.M. Jacobs, P. Ivanov, C.P. Brangwynne, Cell 181, 306 (2020)

    Article  Google Scholar 

  46. T.J. Nott, E. Petsalaki, P. Farber, D. Jervis, E. Fussner, A. Plochowietz, T.D. Craggs, D.P. Bazett-Jones, T. Pawson, J.D. Forman-Kay, A.J. Baldwin, Mol. Cell 57, 936 (2015)

    Article  Google Scholar 

  47. T. Yamazaki, S. Souquere, T. Chujo, S. Kobelke, Y.S. Chong, A.H. Fox, C.S. Bond, S. Nakagawa, G. Pierron, T. Hirose, Mol. Cell 70, 1038 (2018)

    Article  Google Scholar 

  48. Y. Zhang, M. Yang, S. Duncan, X. Yang, M.A.S. Abdelhamid, L. Huang, H. Zhang, P.N. Benfey, Z.A.E. Waller, Y. Ding, Nucleic Acids Res. 47, 11746 (2019)

    Google Scholar 

  49. A. Patel, L. Malinovska, S. Saha, J. Wang, S. Alberti, Y. Krishnan, A.A. Hyman, Science 356, 753 (2017)

    Article  ADS  Google Scholar 

  50. A. Soranno, I. Koenig, M.B. Borgia, H. Hofmann, F. Zosel, D. Nettels, B. Schuler, Proc. Natl. Acad. Sci. U.S.A. 111, 4874 (2014)

    Article  ADS  Google Scholar 

  51. Y. Shin, C.P. Brangwynne, Science 357, 1253 (2017)

    Article  Google Scholar 

  52. A. Khong, T. Matheny, S. Jain, S.F. Mitchell, J.R. Wheeler, R. Parker, Mol. Cell 68, 808 (2017)

    Article  Google Scholar 

  53. S.C. Bunnell, D.I. Hong, J.R. Kardon, T. Yamazaki, C.J. McGlade, V.A. Barr, L.E. Samelson, J. Cell Biol. 158, 1263 (2002)

    Article  Google Scholar 

  54. P.J. Flory, J. Chem. Phys. 10, 51 (1942)

    Article  ADS  Google Scholar 

  55. R.K. Das, K.M. Ruff, R.V. Pappu, Curr. Opin. Struct. Biol. 32, 102 (2015)

    Article  Google Scholar 

  56. Y. Shin, Y.C. Chang, D.S.W. Lee, J. Berry, D.W. Sanders, P. Ronceray, N.S. Wingreen, M. Haataja, C.P. Brangwynne, Cell 175, 1481 (2018)

    Article  Google Scholar 

  57. F.F. Abraham, Homogeneous Nucleation Theory (Elsevier, Academic Press, New York, 1974).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (2018R1C1B5045902 and 2019R1F1A1057948), the DGIST R&D Program of the Ministry of Science and ICT of Korea (20-CoE-BT-04) and in part by the start-up funds from Daegu Gyeongbuk Institute of Science & Technology (DGIST) to J.-C.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Chan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Gwak, E. & Lee, JC. Biophysical underpinnings regarding the formation and the regulation of biomolecular condensates. J. Korean Phys. Soc. 78, 393–400 (2021). https://doi.org/10.1007/s40042-021-00073-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00073-7

Keywords

Navigation