Skip to main content
Log in

Anchoring energy of nematic liquid crystals on zinc oxide film

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The potential of a ZnO transparent electrode as a liquid crystal (LC) alignment layer was assessed by measuring the surface LC anchoring strength. This can be determined by observing the direction of the William domain, which is one of the many patterns generated in liquid crystal electroconvection. The surface of the ZnO layer is modulated by a conventional rubbing method with a rubbing machine and ion beam method to align the LCs and thus, allow the ZnO layer to act as an LC alignment layer. To increase the surface anchoring energy of the ZnO film further, a linear ion-beam irradiation was carried out after rubbing the ZnO layer for the synergistic effect of the alignment techniques, after which the azimuthal surface anchoring energy of the ZnO layer was about 2.23 \(\times\) 10–5 J/m2, which is comparable to the conventional alignment layer, polyimide, used at currently LC displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from TNLC cell depending on the number of rubbings on the ZnO layer when the bottom layer is the rubbed polyimide (a) when the number of rubbing for ZnO layer was one time, (b) three times, and (c) and five times. (d) LC director at midplane in TNLC cell depending on the number of rubbings on ZnO layer

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 395, 151 (1998)

    ADS  Google Scholar 

  3. J.Y. Lee, S.T. Lee, Adv. Mater. 16, 51 (2004)

    Google Scholar 

  4. J.C. Scott, J.H. Kaufman, P.J. Brock, R. DiPietro, J. Salem, J.A. Goitia, J. Appl. Phys. 79, 2745 (1996)

    ADS  Google Scholar 

  5. M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000)

    ADS  Google Scholar 

  6. S.H. Lee, S.L. Lee, H.Y. Kim, Appl. Phys. Lett. 73, 2881 (1998)

    ADS  Google Scholar 

  7. T. Miyashita, Y. Yamaguchi, T. Uchida, J. Appl. Phys. 34, L177 (1995)

    ADS  Google Scholar 

  8. S.G. Kim, S.M. Kim, Y.S. Kim, H.K. Lee, S.H. Lee, Appl. Phys. Lett. 90, 261910 (2007)

    ADS  Google Scholar 

  9. S.-T. Wu, C.-S. Wu, Appl. Phys. Lett. 68, 1455 (1996)

    ADS  Google Scholar 

  10. P.J. Bos, K.R. Beran, Mol. Cryst. Liq. Cryst. 113, 329 (1984)

    Google Scholar 

  11. J.S. Gwag, K.-H. Park, J.L. Lee, J.C. Kim, T.-H. Yoon, Jpn. J. Appl. Phys. 44, 1875 (2005)

    ADS  Google Scholar 

  12. C.G. Jhun, C.P. Chen, U.J. Lee, S.R. Lee, T.-H. Yoon, J.C. Kim, Appl. Phys. Lett. 89, 123507 (2006)

    ADS  Google Scholar 

  13. J.S. Gwag, J. Opt. Soc. Korea 18, 78 (2014)

    Google Scholar 

  14. J.S. Gwag, Y.-J. Lee, J.-H. Kim, H.J. Lee, M.H. Yi, Opt. Express 16, 18102 (2008)

    ADS  Google Scholar 

  15. F.S. Yeung, Y.W. Li, H.-S. Kwok, Appl. Phys. Lett. 88, 041108 (2006)

    ADS  Google Scholar 

  16. J.S. Gwag, J. Fukuda, M. Yoneya, H. Yokoyama, Appl. Phys. Lett. 91, 073504 (2007)

    ADS  Google Scholar 

  17. J.S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J.C. Kim, T.-H. Yoon, Opt. Exp. 16, 2663 (2008)

    ADS  Google Scholar 

  18. P.K. Son, S.H. Yu, J. Yi, J.H. Kwon, J.S. Gwag, J. Appl. Phys. 114, 064506 (2013)

    ADS  Google Scholar 

  19. S.T. Tang, F.H. Yu, J. Chen, M. Wong, H.C. Huang, H.S. Kwok, J. Appl. Phys. 81, 5924 (1997)

    ADS  Google Scholar 

  20. C.P. Chen, C.G. Jhun, T.-H. Yoon, J.C. Kim, Opt. Exp. 15, 17937 (2007)

    ADS  Google Scholar 

  21. T.-H. Yoon, G.D. Lee, J.C. Kim, Opt. Lett. 25, 1547 (2000)

    ADS  Google Scholar 

  22. G.J. Choi, H. Yokoyama, J.S. Gwag, Appl. Opt. 54, 11 (2015)

    Google Scholar 

  23. G.J. Choi, J.S. Gwag, Mol. Cryst. Liq. Cryst. 613, 103 (2015)

    Google Scholar 

  24. Z. Ze, X. Zhu, R. Lu, T.X. Wu, S.T. Wu, Appl. Phys. Lett. 90, 221111 (2007)

    ADS  Google Scholar 

  25. P.K. Son, J. Yi, J.H. Kwon, J.S. Gwag, Appl. Opt. 50, 1333 (2011)

    ADS  Google Scholar 

  26. J.S. Gwag, Y.-J. Lee, J.-H. Kim, H.J. Lee, M.H. Yi, Opt. Exp. 16, 18102 (2008)

    ADS  Google Scholar 

  27. Y.J. Lim, J.H. Song, S.H. Lee, Jpn. J. Appl. Phys. 44, 3080 (2005)

    ADS  Google Scholar 

  28. H. Zhu, E. Bunte, J. Hüpkes, S.M. Huang, Thin Solid Films 519, 2366 (2011)

    ADS  Google Scholar 

  29. H. Zhu, J. Hüpkes, E. Bunte, A. Gerber, S.M. Huang, Thin Solid Films 518, 4997 (2010)

    ADS  Google Scholar 

  30. A.R. Kim, Y.L. Won, K.H. Woo, C.H. Kim, J.H. Moon, ACS Nano 7, 1081 (2013)

    Google Scholar 

  31. S.M. Lee, C.S. Choi, K.C. Choi, H.C. Lee, Org. Electron. 13, 1654 (2012)

    Google Scholar 

  32. B.R. Lee, J.S. Goo, Y.W. Kim, Y.J. You, H. Kim, S.K. Lee, J.W. Shim, T.G. Kim, J. Power Sources 417, 61 (2019)

    ADS  Google Scholar 

  33. A. Hertrich, A. Krekhov, O. Scaldin, J. Phys. II France 4, 239 (1994)

    Google Scholar 

  34. R. Williams, J. Chem. Phys. 39, 384 (1963)

    ADS  Google Scholar 

  35. E.F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969)

    Google Scholar 

  36. L. Kramer, W. Pesch, Annu. Rev. Fluid Mech. 27, 515 (1995)

    ADS  Google Scholar 

  37. S. Kai, W. Zimmermann, Prog. Theor. Phys. Suppl. 99, 458 (1989)

    ADS  Google Scholar 

  38. W. Helfrich, J. Chem. Phys. 50, 100 (1969)

    ADS  Google Scholar 

  39. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    ADS  Google Scholar 

  40. T. Toth-Katona, J.T. Gleeson, Phys. Rev. E 69, 016302 (2004)

    ADS  Google Scholar 

  41. J.T. Gleeson, Phys. Rev. E 63, 026306 (2001)

    ADS  Google Scholar 

  42. P. Coullet, L. Gil, J. Lega, Phys. Rev. Lett. 62, 1619 (1989)

    ADS  Google Scholar 

  43. G. Goren, I. Procaccia, S. Rasenat, V. Steinberg, Phys. Rev. Lett. 63, 1237 (1989)

    ADS  Google Scholar 

  44. T. Toth-Katona, N. Eber, A. Buka, Phys. Rev. E 83, 061704 (2011)

    ADS  Google Scholar 

  45. J.-H. Huh, Phys. Rev. E 92, 062504 (2015)

    ADS  Google Scholar 

  46. G.P. Bryan-Brown, E.L. Wood, I.C. Sage, Nat. 399, 338 (1999)

    ADS  Google Scholar 

  47. L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, L.-C. Chien, AIP Adv. 5, 097218 (2015)

    ADS  Google Scholar 

  48. D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill, Handbook of Liquid Crystals (Wiley-VCH Verlag GmbH, New York, 1998).

    Google Scholar 

  49. F.M. Leslie, Adv. Liq. Cryst. 4, 1 (1979)

    Google Scholar 

  50. D.J. Tritton, Physical Fluid Dynamics (Clarendon Press, Oxford, 1988).

    MATH  Google Scholar 

  51. E. Bodenschatz, W. Zimmermann, L. Kramer, J Phys-Paris 49, 1875 (1988)

    Google Scholar 

  52. J.S. Gwag, J. Yi, J.H. Kwon, Opt. Lett. 35, 456 (2010)

    ADS  Google Scholar 

  53. G.J. Choi, D.G. Ryu, J.S. Gwag, Y. Choi, T.H. Kim, M.S. Park, I. Park, J.W. Lee, J.G. Park, J. Appl. Phys. 125, 064501 (2019)

    ADS  Google Scholar 

  54. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N.D. Lang, P.S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, Nature 411, 5 (2001)

    Google Scholar 

  55. J. Stohr, M.G. Samant, J. Luning, A.C. Callegari, P. Chaudhari, J.P. Doyle, J.A. Lacey, S.A. Lien, S. Purushothaman, J.L. Speidell, Science 292, 2299 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by a research grant from Yeungnam University (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Seog Gwag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, D.G., Choi, G.J., Mishra, R.K. et al. Anchoring energy of nematic liquid crystals on zinc oxide film. J. Korean Phys. Soc. 78, 307–314 (2021). https://doi.org/10.1007/s40042-021-00071-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00071-9

Keywords

Navigation