Skip to main content
Log in

Electronic-temperature estimation of Joule-heated graphene via Raman investigations

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

This article has been updated

Abstract

Temperature-dependent Raman scattering provides valuable information on electron–phonon coupling and phonon anharmonicity of graphene. In this study, we show an enhancement of Joule heating in graphene by confining the current flow in a narrow channel. In addition, we performed a detailed analysis of the anharmonic effect in the hBN/monolayer graphene/hBN heterostructure based on the behaviour of the full-width at half maximum of the G mode with increasing electric power: a non-monotonic trend, leading to the key of approximation of the electronic temperature in graphene. We believe our results could offer a convenient analysis tool to study electron–phonon coupling and anharmonic phonon-decay processes in a high-temperature regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 21 January 2021

    The article was revised to change copy right year.

References

  1. E. Gruber et al., Nat. Commun. 7, 13948 (2016)

    Article  ADS  Google Scholar 

  2. C.R. Dean et al., Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  3. L. Wang et al., Science 342, 614–617 (2013)

    Article  ADS  Google Scholar 

  4. S. Son et al., 2D Materials 5(1), 011006 (2017)

    Article  Google Scholar 

  5. Y.D. Kim et al., Nano Lett. 18(2), 934–940 (2018)

    Article  ADS  Google Scholar 

  6. F. Luo et al., ACS Photon. 6(8), 2117–2125 (2019)

    Article  Google Scholar 

  7. D. Chae, B. Krauss, K. Klitzing, J.H. Smet, Nano Lett. 10(2), 466–471 (2010)

    Article  ADS  Google Scholar 

  8. H.-N. Liu, X. Cong, M.-L. Lin, P.-H. Tan, Carbon 152, 451–458 (2019)

    Article  Google Scholar 

  9. N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007)

    Article  ADS  Google Scholar 

  10. Y. Yang et al., Nano Lett. 19(12), 8526–8532 (2019)

    Article  ADS  Google Scholar 

  11. Y.J. Yu et al., Appl. Phys. Lett. 99, 183105 (2011)

    Article  ADS  Google Scholar 

  12. M. Freitag et al., Nat. Nanotechnol. 5, 497–501 (2010)

    Article  ADS  Google Scholar 

  13. A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. A. 362, 2477–2512 (2004)

    Article  ADS  Google Scholar 

  14. A.C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  15. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235–246 (2013)

    Article  ADS  Google Scholar 

  16. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51–87 (2009)

    Article  ADS  Google Scholar 

  17. G. Froehlicher, S. Berciaud, Phys. Rev. B 91, 205413 (2015)

    Article  ADS  Google Scholar 

  18. C. Ferrante et al., Nat. Commun. 9, 308 (2018)

    Article  ADS  Google Scholar 

  19. D. Yoon, Y. Son, H. Cheong, Nano Lett. 11(8), 3227–3231 (2011)

    Article  ADS  Google Scholar 

  20. M. Lazzeri, M. Calandra, F. Mauri, Phys. Rev. B 68, 220509(R) (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Research Funds of Mokpo National University in 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Hyun Lee or Seok-Kyun Son.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, M., Kim, DH., Lee, JH. et al. Electronic-temperature estimation of Joule-heated graphene via Raman investigations. J. Korean Phys. Soc. 78, 164–168 (2021). https://doi.org/10.1007/s40042-020-00054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00054-2

Keywords

Navigation