Skip to main content
Log in

Non-isothermal Degradation Analysis of Plywood and Determination of Kinetic Parameters Using Coats–Redfern Method

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Thermogravimetry analyzer was used for the study of thermal degradation of plywood under air and nitrogen environment. The investigation was carried out at a heating rate in the range of 5–100 K min−1 from a temperature atmosphere to 1050 K. Thermal decomposition steps dehydration, oxidative reaction (air environment), pyrolysis degradation (nitrogen environment) and char degradation with temperature evolution were reported. Kinetic parameters of thermal degradation step were investigated with model fitting Coats–Redfern method. Arrhenius kinetic reaction model was used for oxidative and pyrolysis reaction degradation stages kinetic parameter estimation. Model kinetic triplets were estimated for different heating rates of the thermal degradation step. The experimental data deviation percentage with the proposed model was found to be below 5% with reasonable accuracy for different heating rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

m :

Mass initial and mass at a time (mg)

t :

Time (s)

W :

Normalized mass

α :

Conversion

T :

Temperature (K)

dα/dt :

Conversion rate

dW/dt :

Normalized DTG (s1)

dm/dt :

Experimental DTG data (mg s1)

K(T):

Reaction rate constant (s)

f(α):

Reaction model

A :

Pre-exponential factor (s1)

R :

Gas constant, 8.314 (J mol1 K1)

n :

Reaction order

β :

Heating rate (K min1)

g(α):

Reaction model integral form

N :

Number of data points

E :

Activation energy (J mol1)

o :

Initial

f :

Final

exp:

Experimental

theo:

Theoretical

i :

Different heating rate values

TGA:

Thermogravimetry analysis

DTG:

Differential thermogravimetry

FTIR:

Fourier-transform infrared spectroscopy

RMSD:

Root-mean-square deviation

References

  1. H.J. Park, H.S. Heo, K.S. Yoo, J.H. Yim, J.M. Sohn, K.E. Jeong, J.K. Jeon, Y.K. Park, Thermal degradation of plywood with block polypropylene in TG and batch reactor system. J. Ind. Eng. Chem. 17, 549–533 (2011). https://doi.org/10.1016/j.jiec.2010.11.002

    Article  Google Scholar 

  2. D.A. Tillman, Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6), 365–384 (2000). https://doi.org/10.1016/S0961-9534(00)00049-0

    Article  Google Scholar 

  3. T. Fateh, T. Rogaume, J. Luche, F. Richard, F. Jabouille, Kinetic and mechanism of the thermal degradation of a plywood by using thermogravimetry and fourier-transformed infrared spectroscopy analysis in nitrogen and air atmosphere. Fire Saf. J. 58, 25–37 (2013). https://doi.org/10.1016/j.firesaf.2013.01.019

    Article  Google Scholar 

  4. F. C. Beall, H. W. Eickner, Thermal degradation of wood components: a review of the literature. U.S.D.A. Forest Serv. Res. Pap. FPL 130 (1970)

  5. G.A. Byrne, D. Gardiner, F.H. Holmes, The pyrolysis of cellulose and the action of flame-retardants. J. Appl. Chem. 16(3), 81–88 (1966). https://doi.org/10.1002/jctb.5010160303

    Article  Google Scholar 

  6. K. Suresh, K. Gulati, S. Kumar, A. Singh, Kinetic study of thermal degradation of varieties of plywood by using thermogravimetry under nitrogen atmosphere. Int. J. Adv. Res. Manag. 3(8), 177–183 (2018)

    Google Scholar 

  7. T. Fateh, T. Rogaume, F. Richard, Multi-scale modeling of the thermal decomposition of fire retardant plywood. Fire Saf. J. 64, 36–47 (2014). https://doi.org/10.1016/j.firesaf.2014.01.007

    Article  Google Scholar 

  8. M. Wu, W. Song, Y. Wu, W. Qu, Preparation and characterization of the flame retardant decorated plywood based on the intumescent flame retardant adhesive. Materials (Basel) 13(3), 1–13 (2020). https://doi.org/10.3390/ma13030676

    Article  Google Scholar 

  9. F. Wang, Z. Gao, M. Zheng, J. Sun, Thermal degradation and fire performance of plywood treated with expanded vermiculite. Fire Mater. 40(3), 427–433 (2016). https://doi.org/10.1002/fam.2297

    Article  Google Scholar 

  10. C. Branca, C. Di Blasi, Global interinsic kinetics of wood oxidation. Fuel. 83(1), 81–87 (2004). https://doi.org/10.1016/S0016-2361(03)00220-5

    Article  Google Scholar 

  11. C. Di Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34(1), 47–90 (2008). https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  12. A. Sharma, B. Mohanty, Non-isothermal TG/DTG-FTIR kinetic study for devolatilization of dalbergia sissoo wood under nitrogen atmosphere. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09978-0

    Article  Google Scholar 

  13. A. Coats, J. Redfern, Kinetic parameters from thermogravimetric data. Nature 201(4916), 68–69 (1964). https://doi.org/10.1038/201068a0

    Article  Google Scholar 

  14. S. Ceylan, Y. Topçu, Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol. 156, 182–188 (2014). https://doi.org/10.1016/j.biortech.2014.01.040

    Article  Google Scholar 

  15. A.K. Varma, P. Mondal, Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J. Therm. Anal. Calorim. 124(1), 487–497 (2016). https://doi.org/10.1007/s10973-015-5126-7

    Article  Google Scholar 

  16. J.J.M. Orfão, F.J.A. Antunes, J.L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials - three independent reactions model. Fuel. 78(3), 349–358 (1999). https://doi.org/10.1016/S0016-2361(98)00156-2

    Article  Google Scholar 

  17. É.D.G. Baroni, K. Tannous, Y.J. Rueda-Ordóñez, L.K. Tinoco-Navarro, Tinoco-Navarro LK. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis. J. Therm. Anal. Calorim. 123(2), 909–917 (2016). https://doi.org/10.1007/s10973-015-4707-9

    Article  Google Scholar 

  18. F.C.R. Lopes, K. Tannous, Y.J. Rueda-Ordóñez, Combustion reaction kinetics of guarana seed residue applying isoconversional methods and consecutive reaction scheme. Bioresour. Technol. 219, 392–402 (2016). https://doi.org/10.1016/j.biortech.2016.07.099

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CSIR-Central Building Research Institute, Roorkee, India, for financial support and permission for the activity.

Funding

Funding was provided by Council of Scientific and Industrial Research, India (Grant No. HCP-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aravind Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A.A., Kumar, R., Ansari, A.A. et al. Non-isothermal Degradation Analysis of Plywood and Determination of Kinetic Parameters Using Coats–Redfern Method. J. Inst. Eng. India Ser. E 102, 249–255 (2021). https://doi.org/10.1007/s40034-021-00215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-021-00215-3

Keywords

Navigation