Skip to main content
Log in

Analysis of Corrosion Rate of Nanohybrid AA 6351/SiC/ZrO2 Composites by Tafel Extrapolation Technique

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

The corrosion resistance of an aluminium alloy (AA 6351) reinforced with nano-Silicon Carbide particles and various weight ratios of nano-Zirconium dioxide particles is explored in this study. AA6351–nanoSiC (5 wt%) composites were treated using powder metallurgy to add nanoZrO2 (3–9 wt% in steps of 3%) to the composition. Electrochemical polarisation measurements assessed the effect of nano-Zirconium dioxide reinforcement on corrosion behaviour in a 3.5% sodium chloride solution. The Tafel method calculated the corrosion rate and the achieved polarisation results. Thus, according to findings, adding more nano-Zirconium dioxide particles into the aluminium alloy (6351) +5% SiC matrix increase corrosion resistance and decrease corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data used to support the findings of this study are included within the article.

Abbreviations

AA:

Aluminium alloy

I corr :

Corrosion current density

E corr :

Corrosion potential

R p :

Polarization resistance

β a :

Anodic slope (Volts/Decade)

β c :

Cathodic slope (Volts/Decade)

CR:

Corrosion rate (mm/year or mils per year)

OCP:

Open circuit potential

EIS:

Electrochemical impedance spectroscopy

SEM:

Scanning electron microscopy

ZrO2 :

Zirconium dioxide or zirconia

SiC:

Silicon carbide

BPR:

Ball to powder ratio

ASTM:

American society for testing and materials

HANMMC:

Hybrid aluminium nanometal matrix composite

PM:

Powder metallurgy

SEM:

Scanning electron microscope

AMC:

Aluminium matrix composite

BN:

Boron nitride

ZrB2 :

Zirconium diboride

Si3N4 :

Silicon nitride

EDS:

Energy dispersive spectroscopy

References

  1. B. Baudouy, A. Four, Low temperature thermal conductivity of aluminum alloy 5056. Cryogenics 60, 1–4 (2014). https://doi.org/10.1016/j.cryogenics.2013.12.008

    Article  Google Scholar 

  2. P. Sharma, S. Sharma, K. Dinesh, A study on the microstructure of the aluminium matrix composites. J Asian Cer Soci 3, 240–244 (2015)

    Article  Google Scholar 

  3. P.C. McDonald et al. (2006) Thermal validation of the design of the CFRP support struts to be used in the spatial framework of the Herschel Space Observatory. Cryogenics. 46298-304

  4. N. Jagadeesh, A.P. Senthil-Kumar, S. Janaki, Studies on mechanical and thermal behaviors of Al6061-SiC-Gr-ZrO2 nanohybrid composites. Mater. Res. Expr. (2018). https://doi.org/10.1088/2053-1591/aadbf6

    Article  Google Scholar 

  5. O. El-Kady, A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater. Des. 54, 348 (2014)

    Article  Google Scholar 

  6. K. Sekar, G. Jayachandra, S. Aravindan, Mechanical and welding properties of A6082-SiC-ZrO2 hybrid composite fabricated by stir and squeeze casting. Mater. Today Proc. 5, 20268–20277 (2018)

    Article  Google Scholar 

  7. P.S. Samuel Ratna Kumar, D.S. Robinson Smart, S. John Alexis, Corrosion behaviour of aluminium metal matrix reinforced with multi-wall carbon nanotube. J Asian Cer Societ 5, 71–75 (2017)

    Article  Google Scholar 

  8. A. Baradeshwaran, A.E. Perumal, Study on mechanical and wear properties of Al7075/Al2O3/graphite hybrid composites. Comp. Part B 56, 464–471 (2014)

    Article  Google Scholar 

  9. A. Baradeshwaran, S.C. Vettivel, A.E. Perumal, N. Selvakumar, R.F. Issac, Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater. Design 63, 620–632 (2014)

    Article  Google Scholar 

  10. K.S. Shetty, A.N. Shetty, Studies on corrosion behavior of 6061 Al-15 vol. pct. SiC(p) composite in HCl Medium by electrochemical Techniques. Surf. Eng. Appl. Electrochem. 51, 374–381 (2015)

    Article  Google Scholar 

  11. S. Arif, M.T. Alam, T. Aziz, H.A. Ansari, Morphological and wear behaviour of new Al–SiC micro-SiC nano hybrid nanocomposites fabricated through powder metallurgy. Mater. Res. Expr. 5, 046534 (2018). https://doi.org/10.1088/2053-1591/aabcf0

    Article  Google Scholar 

  12. R. Sharma, A.K. Singh, A. Arora, S. Pati, P.S. De, Effect of friction stir processing on corrosion of Al-TiB2 based composite in 35 wt% sodium chloride solution. Trans. Nonferr. Met. Soc. China 29(7), 1383–1392 (2019). https://doi.org/10.1016/S1003-6

    Article  Google Scholar 

  13. T. Aoshuang, T. Jie, Z. Xiang, F. Dingfa, Z. Hui, Fabrication of aluminium hybrid reinforced with SiC microparticles and TiB2 nanoparticles by powder metallurgy. Powder Metall. 60, 66–72 (2017)

    Article  Google Scholar 

  14. S. Arif, M.T. Alam, A.H. Ansari, M.B. Shaikh, M.A. Siddiqui, Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique. Mater. Res. Expr. 5, 056506 (2018). https://doi.org/10.1088/2053-1591/aabec8

    Article  Google Scholar 

  15. S. Kumar, A. Kumar, C. Vanitha, Corrosion behaviour of Al 7075/TiC composites processed through friction stir processing. Mater. Today Proc. 15, 21–29 (2019). https://doi.org/10.1016/j.matpr.2019.05.019

    Article  Google Scholar 

  16. E.S.M. Sherif, H.S. Abdo, K.A. Khalil, A.M. Nabawy, Efect of titanium carbide content on the corrosion behavior of Al-TiC composites processed by high energy ball mill. J. Electrochem. Sci. Int. (2016). https://doi.org/10.20964/2016.06.18

    Article  Google Scholar 

  17. S. Arif, T. Aziz, A.H. Ansari, Characterization and mechanical behaviour of zirconia reinforced aluminium matrix nanocomposites fabricated through powder metallurgy technique. Mater. Focus 7(6), 901–905 (2018). https://doi.org/10.1166/mat.2018.1612

    Article  Google Scholar 

  18. M.B.N. Shaikh, S. Arif, M.A. Siddiqui, Fabrication and characterization of aluminium hybrid composites reinforced with fly ash and silicon carbide through powder metallurgy. Mater. Res. Expr. 5, 046506 (2018)

    Article  Google Scholar 

  19. S.K. Selvaraj, M.K. Nagarajan, L.A. Kumaraswamidhas, An investigation of abrasive and erosion behavior of AA 2618 reinforced with Si3N4, AlN and ZrB2 in situ composites by using optimization techniques. Arch. Civil Mech. Eng. 17, 43–54 (2017). https://doi.org/10.1016/j.acme.2016.08.003

    Article  Google Scholar 

  20. H.M. Zakaria, Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Eng. J. 5, 831–838 (2014)

    Article  Google Scholar 

  21. M.K. Abbass, K.S. Hassan, A.S. Alwan, Study of corrosion resistance of aluminum alloy 6061/SiC composites in 3.5% NaCl solution. Int. J. Mater. Mech. Manuf. 3, 31–35 (2015). https://doi.org/10.7763/IJMMM.2015.V3.161

    Article  Google Scholar 

  22. C. Thiagarajan, T. Maridurai, T. Shaafi, A. Muniappan, Machinability studies on hybrid nano-SiC and nano-ZrO2 reinforced aluminium hybrid composite by wire-cut electrical discharge machining. Mater. Today: Proceed. (2021). https://doi.org/10.1016/j.matpr.2021.07.029

    Article  Google Scholar 

  23. A. Khan, M.W. Abdelrazeq, M.R. Mattli, M.M. Yusuf, A. Alashraf, P.R. Matli, R.A. Shakoor, Structural and mechanical properties of Al-SiC-ZrO2 nanocomposites fabricated by microwave sintering technique. Crystals 10, 904 (2020). https://doi.org/10.3390/cryst10100904

    Article  Google Scholar 

  24. S. Arif, M.T. Alam, A.H. Ansari, M.A. Siddiqui, M. Mohsin, Study of mechanical and tribological behaviour of Al/SiC/ZrO2 hybrid composites fabricated through powder metallurgy technique. Mater. Res. Expr. 4, 076511 (2017). https://doi.org/10.1088/2053-1591/aa7b5f

    Article  Google Scholar 

  25. S. Chandrasekhara, N.B.V. Prasad, Experimental investigation on mechanical, wear and corrosive properties of Aa6061-Tib2 in-situ composites produced by K2tif6- Kbf4 reaction system at optimum holding time. AIP Conf. Proc. 2327, 020037 (2021). https://doi.org/10.1063/5.0039805

    Article  Google Scholar 

  26. N. Sunitha, K.G. Manjunatha, S. Khan, M. Sravanthi, Study of SiC/graphite particulates on the corrosion behavior of Al 6065 MMCs using tafel polarization and impedance. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-1063-6

    Article  Google Scholar 

  27. S. Khan, K.G. Manjunatha, Comparisons of pitting corrosion characteristics of Al6061matrix alloy and its composite by weight loss and electrochemical method. Int. J. Res. Aeronaut. Mech. Eng. 6(1), 1–16 (2018)

    Google Scholar 

  28. J.A. Kamaj, Comparision of potentiodynamic polarization and weight loss measurements techniques in the study of corrosion behavior of 6061 Al/SiC composite in 3.5 M NaCl solution. Asian J. Appl. Sci. 3, 264–270 (2015)

    Google Scholar 

  29. A. Karthikeyan, G.R. Jinu, Investigation on mechanical and corrosion behaviour of AA8011 reinforced with TiC and graphite hybrid composites. Mater. Res. Expr. 6, 1065b5 (2019). https://doi.org/10.1088/2053-1591/ab3e87

    Article  Google Scholar 

  30. E. Kennedy, B.S. Sachin, M. Ramachandra, C.A. Niranjan, N. Sriraman, V.K. Jain, N.S. Narayanan, Effect of ZrO2 nano-particles on mechanical and corrosion behaviour of Al2024 alloy. Mater. Today: Proceed. (2020). https://doi.org/10.1016/j.matpr.2020.06.194

    Article  Google Scholar 

  31. J. Hemanth, M.R. Divya, Fabrication and corrosion behaviour of aluminium alloy (LM-13) reinforced with Nano-ZrO2 particulate chilled nano metal matrix composites (CNMMCs) for aerospace applications. J. Mater. Sci. Chem. Eng. 6, 136–150 (2018). https://doi.org/10.4236/msce.2018.67015

    Article  Google Scholar 

  32. P.N. Bellamkonda, S. Sudabathula, V. Mohan Srikanth, A. Rajesh, Wear and electrochemical corrosion behaviour of nano ZrO2 reinforced aa7075 metal matrix composites. Int. J. Mech. Prod. Eng. Res. Develop 9(3), 793–802 (2019)

    Google Scholar 

  33. S. Yadav, S. Gangwar, P.C. Yadav, V.K. Pathak, S. Sahu, Mechanical and corrosion behavior of SiC/Graphite/ZrO2 hybrid reinforced aluminum-based composites for marine environment. Surf. Topogr. Metrol. Prop. 9, 045022 (2021). https://doi.org/10.1088/2051-672X/ac2f87

    Article  Google Scholar 

  34. ASTM G102: Practice for calculation of corrosion rates and related information from electrochemical measurements

  35. C.L. Burdick, E.A. Owen, The atomic structure of carborundum determined by x-rays. Am. Chem. Soc. 40(12), 1749–1759 (1918). https://doi.org/10.1021/ja02245a001

    Article  Google Scholar 

  36. F.M. Mulder, B. Assfour, J. Huot, T.J. Dingemans, M. Wagemaker, A.J. Ramirez-Cuesta, Hydrogen in the metals. J. Phys. Chem. C 114, 10648 (2010)

    Article  Google Scholar 

  37. U. Martin, H. Boysen, F. Frey, Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Cryst. B49, 403–413 (1993). https://doi.org/10.1107/S0108768192011297

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KV and TS. The first draft of the manuscript was written by TS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. SarithNaidu.

Ethics declarations

Conflict of interest

The authors confirm that this article’s content has no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors declare that the figures and tables used in this manuscript are original and are not published anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SarithNaidu, T., VenkataSubbaiah, K. Analysis of Corrosion Rate of Nanohybrid AA 6351/SiC/ZrO2 Composites by Tafel Extrapolation Technique. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-023-00567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40033-023-00567-7

Keywords

Navigation