Skip to main content
Log in

Multi-Objective Optimization of Turning for Nickel-Based Alloys Using Taguchi-GRA and TOPSIS Approaches

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

One of the significant challenges faced by industries today is obtaining the best process parameters while meeting the needs of both producers and users. It is necessary to introduce and use optimization strategies to accomplish this aim and satisfy these demands. This paper examines the exploit of Taguchi grey relational analysis (GRA) to optimize the turning process parameters of a nickel-based alloy, considering surface roughness (SR), tool wear rate (TW), and material removal rate (MRR). The approach combines L9 experiments with grey relational analysis, incorporating control parameters such as speed (A) at 300 rpm, 400 rpm, and 500 rpm; feed rate (B) at 0.05 mm/rev, 0.10 mm/rev, and 0.15 mm/rev; and cutting depth (C) at 0.1 mm, 0.3 mm, and 0.5 mm. The optimal parameter values obtained were A = 300 rpm, B = 0.15 mm/rev, and C = 0.5 mm, resulting in the best production outcomes: SR = 1.56 µm, TW = 0.0178 mm, and MRR = 2.14884 cm3/min. To compare the results, technique TOPSIS, a Multiple Attribute Decision Making technique, was also employed. The optimal parameter values derived from TOPSIS were A = 500 rpm, B = 0.15 mm/rev, and C = 0.5 mm, leading to ideal output parameters: SR = 1.774 µm, TW = 0.0191 mm, and MRR = 3.85226 cm3/min. The comparative study demonstrates the efficiency of the Taguchi GRA approach in optimizing turning process parameters for nickel-based alloys. Using this approach, we accomplished significant decreases in surface roughness (SR), tool wear rate (TW), and material removal rate (MRR) by 12.6%, 6.81%, and 44.21%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Akca, A. Gürsel, A review on superalloys and IN718 nickel-based INCONEL superalloy. Period. Eng. Nat. Sci. PEN (2015). https://doi.org/10.21533/pen.v3i1.43

    Article  Google Scholar 

  2. K. Mahesh, J.T. Philip, S.N. Joshi, B. Kuriachen, Machinability of Inconel 718: a critical review on the impact of cutting temperatures. Mater. Manuf. Process. 36, 753–791 (2021). https://doi.org/10.1080/10426914.2020.1843671

    Article  Google Scholar 

  3. S. Roy, P.R. Kumar, R.K. Das, A brief review on machining of Inconel 718. Mater. Today Proc. 5, 18664–18673 (2018). https://doi.org/10.1016/j.matpr.2018.06.212

    Article  Google Scholar 

  4. M. Sarıkaya, M.K. Gupta, I. Tomaz, D.Y. Pimenov, M. Kuntoğlu, N. Khanna, Ç.V. Yıldırım, G.M. Krolczyk, A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J. Manuf. Sci. Technol. 35, 624–658 (2021). https://doi.org/10.1016/j.cirpj.2021.08.005

    Article  Google Scholar 

  5. A. Thakur, S. Gangopadhyay, State-of-the-art in surface integrity in machining of nickel-based super alloys. Int. J. Mach. Tools Manuf 100, 25–54 (2016). https://doi.org/10.1016/j.ijmachtools.2015.10.001

    Article  Google Scholar 

  6. A. De Bartolomeis, S.T. Newman, I.S. Jawahir, D. Biermann, A. Shokrani, Future research directions in the machining of Inconel 718. J. Mater. Process. Technol. 297, 117260 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117260

    Article  Google Scholar 

  7. H. Boumaza, S. Belhadi, M.A. Yallese, K. Safi, A. Haddad, Optimization of surface roughness, tool wear and material removal rate in turning of Inconel 718 with ceramic composite tools using MCDM methods based on Taguchi methodology. Sādhanā 48(1), 1 (2022). https://doi.org/10.1007/s12046-022-02060-5

    Article  Google Scholar 

  8. S. Roy, R. Kumar, A. Panda, R.K. Das, A brief review on machining of Inconel 718. Mater. Today Proc. 5(9), 18664–18673 (2018). https://doi.org/10.1016/j.matpr.2018.06.212

    Article  Google Scholar 

  9. D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquere, V. Zerrouki, J. Vigneau, A review of developments towards dry and high speed machining of Inconel 718 alloy. Int. J. Mach. Tools Manuf. 44(4), 439–456 (2004). https://doi.org/10.1016/S0890-6955(03)00159-7

    Article  Google Scholar 

  10. N. Khanna, J. Airao, C.K. Nirala, G.M. Krolczyk, Novel sustainable cryo-lubrication strategies for reducing tool wear during ultrasonic-assisted turning of Inconel 718. Tribol. Int. 174, 107728 (2022). https://doi.org/10.1016/j.triboint.2022.107728

    Article  Google Scholar 

  11. Y. Deshpande, A. Andhare, N.K. Sahu, Estimation of surface roughness using cutting parameters, force, sound, and vibration in turning of Inconel 718. J. Braz. Soc. Mech. Sci. Eng. 39(12), 5087–5096 (2017). https://doi.org/10.1007/s40430-017-0819-4

    Article  Google Scholar 

  12. D.M. D’addona, S.J. Raykar, M.M. Narke, High speed machining of Inconel 718: tool wear and surface roughness analysis. Procedia CIRP 62, 269–274 (2017). https://doi.org/10.1016/j.procir.2017.03.004

    Article  Google Scholar 

  13. H. Tebassi, M.Y. Yallese, I. Meddour, F. Girardin, T. Mabrouki, On the modeling of surface roughness and cutting force when turning of Inconel 718 using artificial neural network and response surface methodology: accuracy and benefit. Period. Polytech. Mech. Eng. 61, 1–11 (2017). https://doi.org/10.3311/PPme.8742

    Article  Google Scholar 

  14. G.C. Behera, J. Thrinadh, S. Datta, Influence of cutting insert (uncoated and coated carbide) on cutting force, tool-tip temperature, and chip morphology during dry machining of Inconel 825. Mater. Today Proc. 38, 2664–2670 (2021). https://doi.org/10.1016/j.matpr.2020.08.332

    Article  Google Scholar 

  15. J.L. Cantero, J. Diaz-Alvarez, M.H. Miguelez, N.C. Marin, Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297(1–2), 885–894 (2013). https://doi.org/10.1016/j.wear.2012.11.004

    Article  Google Scholar 

  16. L. Tan, C. Yao, X. Li, Y. Fan, M. Cui, Effects of machining parameters on surface integrity when turning Inconel 718. J. Mater. Eng. Perform. 1–11(10), 157–168 (2022). https://doi.org/10.1007/s11665-021-06523-4

    Article  Google Scholar 

  17. W.H. Pereira, S. Delijaicov, Surface integrity of INCONEL 718 turned under cryogenic conditions at high cutting speeds. Int. J. Adv. Manuf. Technol. 104, 2163–2177 (2019). https://doi.org/10.1007/s00170-019-03946-1

    Article  Google Scholar 

  18. D. Xu, Y. Liu, L. Ding, J. Zhou, R. M’Saoubi, H. Liu, Experimental and numerical investigation of Inconel 718 machining with worn tools. J. Manuf. Process. 77, 163–173 (2022). https://doi.org/10.1016/j.jmapro.2022.03.016

    Article  Google Scholar 

  19. K. Mahesh, J.T. Philip, S.N. Joshi, B. Kuriachen, Machinability of Inconel 718: a critical review on the impact of cutting temperatures. Mater. Manuf. Process 36(7), 753–791 (2021). https://doi.org/10.1080/10426914.2020.1843671

    Article  Google Scholar 

  20. R.P. Zeilmann, F. Fontanive, R.M. Soares, Wear mechanisms during dry and wet turning of Inconel 718 with ceramic tools. Int. J. Adv. Manuf. Technol. 92, 2705–2714 (2017). https://doi.org/10.1007/s00170-017-0329-7

    Article  Google Scholar 

  21. I. Kouahla, M.A. Yallese, S. Belhadi, K. Safi, M. Nouioua, Tool vibration, surface roughness, cutting power, and productivity assessment using RSM and GRA approach during machining of Inconel 718 with PVD-coated carbide tool. Int. J. Adv. Manuf. Technol. 122(3–4), 1835–1856 (2022). https://doi.org/10.1007/s00170-022-09988-2

    Article  Google Scholar 

  22. A. Devillez, G. Le Coz, S. Dominiak, D. Dudzinski, Dry machining of Inconel 718 workpiece surface integrity. J. Mater. Process. Technol. 211, 1590–1598 (2011). https://doi.org/10.1016/j.jmatprotec.2011.04.011

    Article  Google Scholar 

  23. K.H. Park, G.D. Yang, D.Y. Lee, Tool wear analysis on coated and uncoated carbide tools in inconel machining. Int. J. Precis. Eng. Manuf. 16, 1639–1645 (2015). https://doi.org/10.1007/s12541-015-0215-x

    Article  Google Scholar 

  24. V.V. Reddy, R.K. Mandava, V.R. Rao, S. Mandava, Optimization of dry sliding wear parameters of Al 7075 MMC’s using Taguchi method. Mater. Today Proc. 62, 6684–6688 (2022)

    Article  Google Scholar 

  25. K. Srinivasulu Reddy, V. Venkata Reddy, R.K. Mandava, Optimization of turning process parameters using entropy-GRA and DEAR methods. in Recent advances in industrial production: select proceedings of ICEM 2020 (pp. 315–324). Springer Singapore. (2022).

  26. S.R. Rao, R.K. Mandava, V.R.K. Rao, Multi-objective optimization in turning of Al 7075-SiC composites using desirability analysis. Mater. Today Proc. 56, 1281–1289 (2022)

    Article  Google Scholar 

  27. G.R. Ponugoti, R.K. Mandava, P.R. Vundavilli, Tribological behaviour of Al6061/Gr/WC hybrid MMCs using multi-response optimisation. Int. J. Math. Model. Numer. Optim. 13(2), 123–146 (2023)

    Google Scholar 

  28. L.M. Maiyar, R. Ramanujam, K. Venkatesan, J. Jerald, Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Eng. 64, 1276–1282 (2013). https://doi.org/10.1016/j.proeng.2013.09.208

    Article  Google Scholar 

  29. A.K. Sahu, P.P. Mohanty, S.K. Sahoo, Electro discharge machining of Ti-alloy (Ti6Al4V) and 316L stainless steel and optimization of process parameters by grey relational analysis (GRA) method. Adv. D Print. Addit. Manuf. Technol. (2017). https://doi.org/10.1007/978-981-10-0812-2_6

    Article  Google Scholar 

  30. R. Kant, S.S. Dhami, Multi-response optimization of parameters using GRA for abrasive water jet machining of EN31 steel. Mater. Today Proc. 47, 6141–6146 (2021). https://doi.org/10.1016/j.matpr.2021.05.053

    Article  Google Scholar 

  31. G. Kant, K.S. Sangwan, Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J. Clean. Prod. 83, 151–164 (2014). https://doi.org/10.1016/j.jclepro.2014.07.073

    Article  Google Scholar 

  32. T.T. Hong, N.M. Cuong, N.D. Ngoc, L.A. Tung, T.N. Giang, L.T. Quy, N.T. Tu, D.T. Tam, Multi-objective optimization of process parameters during electrical discharge machining of hardened 90CrSi steel by applying Taguchi technique with grey relational analysis. in Advances in engineering research and application: proceedings of the international conference on engineering research and applications, ICERA 2020 (pp. 572–583). Springer International Publishing. (2021). https://doi.org/10.1007/978-3-030-64719-3_63

  33. R. Ramanujam, N. Muthukrishnan, R. Raju, Optimization of cutting parameters for turning Al-SiC (10p) MMC using ANOVA and grey relational analysis. Int. J. Precis. Eng. Manuf. 12, 651–656 (2011). https://doi.org/10.1007/s12541-011-0084-x

    Article  Google Scholar 

  34. B. Rajeswari, K.S. Amirthagadeswaran, Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis. Measurement 105, 78–86 (2017). https://doi.org/10.1016/j.measurement.2017.04.014

    Article  Google Scholar 

  35. P.K. Karsh, H. Singh, Multi-characteristic optimization in wire electrical discharge machining of inconel-625 by using taguchi-grey relational analysis (GRA) approach: optimization of an existing component/product for better quality at a lower cost. in Design and optimization of mechanical engineering products (pp. 281–303). IGI Global. (2018). https://doi.org/10.4018/978-1-5225-3401-3.ch014

  36. N. Sanghvi, D. Vora, J. Patel, A. Malik, Optimization of end milling of Inconel 825 with coated tool: a mathematical comparison between GRA, TOPSIS and Fuzzy Logic methods. Mater. Today Proc. 38, 2301–2309 (2021). https://doi.org/10.1016/j.matpr.2020.06.413

    Article  Google Scholar 

  37. G. Alsoruji, T. Muthuramalingam, E.B. Moustafa, A. Elsheikh, Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy. J. Market. Res. 18, 720–730 (2022). https://doi.org/10.1016/j.jmrt.2022.02.112

    Article  Google Scholar 

  38. H.L. Lin, Optimization of Inconel 718 alloy welds in an activated GTA welding via Taguchi method, gray relational analysis, and a neural network. Int. J. Adv. Manuf. Technol. 67(1–4), 939–950 (2013). https://doi.org/10.1007/s00170-012-4538-9

    Article  Google Scholar 

  39. K.A. Vikram, V.V.K. Lakshmi, A.V. Praveen, Evaluation of process parameters using GRA while machining low machinability material in dry and wet conditions. Mater. Today Proc. 5(11), 25477–25485 (2018). https://doi.org/10.1016/j.matpr.2018.10.353

    Article  Google Scholar 

  40. Y. Touggui, S. Belhadi, T. Mabrouki, M. Temmar, M.A. Yallese, Dry turning optimization of austenitic stainless steel 316L based on Taguchi and TOPSIS approaches. Matériaux Tech. 108(4), 401 (2020). https://doi.org/10.1051/mattech/2020034

    Article  Google Scholar 

  41. B. Singaravel, T. Selvaraj, Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Tehnički Vjesnik 22(6), 1475–1480 (2015). https://doi.org/10.17559/TV-20140530140610

    Article  Google Scholar 

  42. A. Singh, S. Datta, S.S. Mahapatra, Application of TOPSIS in the Taguchi method for optimal machining parameter selection. J. Manuf. Sci. Prod. 11(1–3), 49–60 (2011). https://doi.org/10.1515/jmsp.2011.002

    Article  Google Scholar 

  43. R. Thirumalai, J.S. Senthilkumaar, P. Selvarani, R.M. Arunachalam, K.M. Senthilkumaar, Investigations of surface roughness and flank wear behaviour in machining of Inconel 718. Aust. J. Mech. Eng. 10(2), 157–168 (2012). https://doi.org/10.7158/M12-040.2012.10.2

    Article  Google Scholar 

  44. M.K. Pradhan, Estimating the effect of process parameters on MRR, TWR and radial overcut of EDMed AISI D2 tool steel by RSM and GRA coupled with PCA. Int. J. Adv. Manuf. Technol. 68(1–4), 591–605 (2013). https://doi.org/10.1007/s00170-013-4780-9

    Article  Google Scholar 

  45. M. Hanif, W. Ahmad, S. Hussain, M. Jahanzaib, A.H. Shah, Investigating the effects of electric discharge machining parameters on material removal rate and surface roughness on AISI D2 steel using RSM-GRA integrated approach. Int. J. Adv. Manuf. Technol. 101, 1255–1265 (2019). https://doi.org/10.1007/s00170-018-3019-1

    Article  Google Scholar 

  46. R. Chaudhari, J. Vora, D.M. Parikh, V. Wankhede, S. Khanna, Multi-response optimization of WEDM parameters using an integrated approach of RSM–GRA analysis for pure titanium. J. Inst. Eng. India Ser. D 101, 117–126 (2020). https://doi.org/10.1007/s40033-020-00204-7

    Article  Google Scholar 

  47. E.M. Yaser, K. Shunmugesh, Multi-objective optimization of milling process para)meters in glass fibre reinforced polymer via grey relational analysis and desirability function. Mater. Today Proc. 11, 1015–1023 (2019). https://doi.org/10.1016/j.matpr.2018.12.032

    Article  Google Scholar 

  48. Y.V. Deshpande, A.B. Andhare, P.M. Padole, Application of ANN to estimate surface roughness using cutting parameters, force, sound and vibration in turning of Inconel 718. SN Appl. Sci. 1(1), 104 (2019). https://doi.org/10.1007/s42452-018-0098-4

    Article  Google Scholar 

  49. V. Sivalingam, G. Poogavanam, Y. Natarajan, J. Sun, Optimization of atomized spray cutting fluid eco-friendly turning of Inconel 718 alloy using ARAS and CODAS methods. Int. J. Adv. Manuf. Technol. 120(7–8), 4551–4564 (2022). https://doi.org/10.1007/s00170-022-09047-w

    Article  Google Scholar 

  50. S. Zahoor, W. Abdul-Kader, A. Shehzad, M.S. Habib, Milling of Inconel 718: an experimental and integrated modeling approach for surface roughness. Int. J. Adv. Manuf. Technol. 120(3–4), 1609–1624 (2022). https://doi.org/10.1007/s00170-021-08648-1

    Article  Google Scholar 

  51. P.M. Gopal, K.S. Prakash, Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC. Measurement 116, 178–192 (2018). https://doi.org/10.1016/j.measurement.2017.11.011

    Article  Google Scholar 

  52. Coromant, S., (2017). Silent tools. Sandvik, Sandviken.

  53. M. Mia, N.R. Dhar, Prediction of surface roughness in hard turning under high pressure coolant using artificial neural network. Measurement 92, 464–474 (2016). https://doi.org/10.1016/j.measurement.2016.06.048

    Article  Google Scholar 

  54. A.M. Barnes, K.D. Bartle, V.R. Thibon, A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribol. Int. 34(6), 389–395 (2001). https://doi.org/10.1016/S0301-679X(01)00028-7

    Article  Google Scholar 

  55. J.A. Okolie, S. Nanda, A.K. Dalai, J.A. Kozinski, Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design. Environ. Pollut. 283, 117040 (2021). https://doi.org/10.1016/j.envpol.2021.117040

    Article  Google Scholar 

  56. O. Zerti, M.A. Yallese, S. Belhadi, L. Bouzid, Taguchi design of experiments for optimization and modeling of surface roughness when dry turning X210Cr12 steel. in Applied mechanics, behavior of materials, and engineering systems: selected contributions to the 5th Algerian congress of mechanics, CAM2015, El-Oued, Algeria, October 25–29 (pp. 275–288). Springer International Publishing. (2017). https://doi.org/10.1007/978-3-319-41468-3_22

  57. S. Chakraborty, S. Chakraborty, A scoping review on the applications of MCDM techniques for parametric optimization of machining processes. Arch. Comput. Methods Eng. 29(6), 4165–4186 (2022). https://doi.org/10.1007/s11831-022-09731-w

    Article  Google Scholar 

  58. N.A. Zolpakar, M.F. Yasak, S. Pathak, A review: use of evolutionary algorithm for optimisation of machining parameters. Int. J. Adv. Manuf. Technol. 115, 31–47 (2021). https://doi.org/10.1007/s00170-021-07155-7

    Article  Google Scholar 

  59. R.R. Bijjam, S. Chandanam, G. Nandipati, S.H. Dhoria, Optimization of machining parameters in drilling of glass/hemp/bamboo fibres based hybrid polymer composites. Ann. de Chimie Sci. des Matériaux 46(3), 127–133 (2022). https://doi.org/10.18280/acsm.460303

    Article  Google Scholar 

  60. A. Kumar, R.N. Rai, Grey-taguchi and TOPSIS-taguchi-based optimisation of performance parameters of spark EDM on heat-treated AA7050/5 B 4 C composite. J. Inst. Eng. India Ser. D 101, 71–79 (2020). https://doi.org/10.1007/s40033-020-00211-8

    Article  Google Scholar 

  61. M. Phate, S. Toney, V. Phate, V. Tatwawadi, Multi-response optimization of Al/GrCp10 MMC performance in WEDM using integrated TOPSIS-ANFIS approach. J. Inst Eng India Ser D 103(1), 249–261 (2022)

    Article  Google Scholar 

  62. M. Ficko, D. Begic-Hajdarevic, V. Hadžiabdić, S. Klancnik, Multi-response optimisation of turning process parameters with GRA and TOPSIS methods. Int. J. Simul. Model 19, 547–558 (2020). https://doi.org/10.2507/IJSIMM19-4-524

    Article  Google Scholar 

  63. M. Sheheryar, M.A. Khan, S.H.I. Jaffery, M. Alruqi, R. Khan, M.N. Bashir, J. Petru, Multi-objective optimization of process parameters during micro-milling of nickel-based alloy inconel 718 using taguchi-grey relation integrated approach. Materials 15(23), 8296 (2022). https://doi.org/10.3390/ma15238296

    Article  Google Scholar 

  64. D. Cica, D. Kramar, Multi-objective optimization of high-pressure jet-assisted turning of Inconel 718. Int. J. Adv. Manuf. Technol. 105, 4731–4745 (2019). https://doi.org/10.1007/s00170-019-04513-4

    Article  Google Scholar 

  65. R. Rangappa, G.M. Patel, G.R. Chate, D. Lokare, A. Lakshmikanthan, K. Giasin, D.Y. Pimenov, Coaxiality error analysis and optimization of cylindrical parts of CNC turning process. Int. J. Adv. Manuf. Technol. 120(9–10), 6617–6634 (2022). https://doi.org/10.1007/s00170-022-09184-2

    Article  Google Scholar 

  66. M.B.N. Shaikh, M. Ali, Z.A. Khan, M. Asjad, An MCDM approach for multi-response optimisation of machining parameters in turning of EN8 steel (AISI-1040) for sustainable manufacturing. Int. J. Interact. Design Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01368-8

    Article  Google Scholar 

  67. W. Yang, Y. Wu, A novel TOPSIS method based on improved grey relational analysis for multiattribute decision-making problem. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/8761681

    Article  Google Scholar 

  68. S. Chatterjee, S. Lim, A TOPSIS-inspired ranking method using constrained crowd opinions for urban planning. Entropy 24(3), 371 (2022). https://doi.org/10.3390/e24030371

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha H. Dhoria.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastan Rao, P., Deva Raj, C., Dhoria, S.H. et al. Multi-Objective Optimization of Turning for Nickel-Based Alloys Using Taguchi-GRA and TOPSIS Approaches. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-023-00554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40033-023-00554-y

Keywords

Navigation