Skip to main content

Advertisement

Log in

Piezo-beam Structure in a Pipe with Turbulent Flow as Energy Harvester: Mathematical Modeling and Simulation

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Harvesting energy from natural flows like wind and water with smart materials such as piezoelectric yields an economical, eco-friendly, lightweight, and sustainable source of electricity for gadgets. The higher level of spatial coherence exhibited by turbulent flows and the vibration induced by piezoelectric beam arrangement with the striking of fluid offers a distinct opportunity for energy generation. In the proposed work, an investigation has been made to generate voltage by striking turbulent flowing fluid with the velocity of 1 m/s on a piezo-beam in a circular pipe mounted inside it at a distance of 0.20 m from the inlet. Simulation has been done by finite element analysis (FEA) in ANSYS software, while the mathematical modeling for fluid–piezo interaction has been done using discretization method. The vortex shedding phenomenon occurs by induced vibrations due to the interaction of the fluid with a piezoelectric beam arrangement of pipe at the frequency range of 10–103 Hz. Consequently, the maximum voltage of 2.95586*10–1 V has been generated in the structural arrangement at a frequency of 103 Hz through simulation. Further, it can be stored in storage devices like batteries for upcoming usage. The simulation and mathematical modeling findings are in good agreement with a percentage error of 2.033.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

FEA:

Finite element analysis

PZT:

Lead zirconate titanate

PVDF:

Polyvinylidene fluoride

FSI:

Fluid solid interaction

PEH:

Piezoelectric energy harvesting

RANS:

Reynolds averaged Navier–Stokes equations

K.E:

Kinetic energy

TFEH:

Turbulent flow energy harvester

LED:

Light emitting diode

EVMS:

Equivalent von Mises stress

MSN:

Micro-sensor network

References

  1. I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8

    Article  Google Scholar 

  2. J. Yadav, D. Yadav, R. Vashistha, D.P. Goyal, D. Chhabra, Green energy generation through PEHF–a blueprint of alternate energy harvesting. Int. J. Green Energy 16(3), 242–255 (2019). https://doi.org/10.1080/15435075.2018.1562930

    Article  Google Scholar 

  3. D. Yadav, J. Yadav, R. Vashistha, D.P. Goyal, D. Chhabra, Modeling and simulation of an open channel PEHF system for efficient PVDF energy harvesting. Mech. Adv. Mater. Struct. 28(8), 812–826 (2021). https://doi.org/10.1080/15376494.2019.1601307

    Article  Google Scholar 

  4. M. Yadav, D. Yadav, S. Kumar, D. Chhabra, State of art of different kinds of fluid flow interactions with piezo for energy harvesting considering experimental, simulations and mathematical modeling. J. Math. Comput. Sci. 11(6), 8258–8287 (2021)

    Google Scholar 

  5. N. Kumar, G. Singh, A novel algorithm to improve the power quality for the smart grid and integration with the optimization framework. Int. J. Eng. Trends Technol. 69(9), 272–280 (2021)

    Article  Google Scholar 

  6. M. Yadav, A review on piezoelectric energy harvesting systems based on different mechanical structures. Int. J. Enhanced Res. Sci. Technol. Eng. 9(1), 1–7 (2020)

    Google Scholar 

  7. N. Kumar, G. Singh, A study of ATC losses, tools, techniques and ongoing applications in smart grid. Int. J. Eng. Trends Technol. 70(3), 140–150 (2022)

    Article  Google Scholar 

  8. M. Yadav, D. Yadav, R. K. Garg, R. K. Gupta, S. Kumar, D. Chhabra, Modeling and optimization of piezoelectric energy harvesting system under dynamic loading. In Advances in Fluid and Thermal Engineering, pp. 339–353 (2021). https://rb.gy/wnvr7c

  9. B. Maamer, A. Boughamoura, A.M. Fath El-Bab, L.A. Francis, F. Tounsi, A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers. Manag. 199, 111973 (2019). https://doi.org/10.1016/j.enconman.2019.111973

    Article  Google Scholar 

  10. M. Yadav, D. Yadav, S. Kumar, R.K. Garg, D. Chhabra, Experimental & mathematical modeling and analysis of piezoelectric energy harvesting with dynamic periodic loading. Int. J. Recent Technol. Eng. 8(3), 6346–6350 (2019)

    Google Scholar 

  11. S. Abrol, D. Chhabra, Experimental investigations of piezoelectric energy harvesting with turbulent flow. Int. J. Mech. Prod. Eng. Res. Dev. 8(1), 703–710 (2018)

    Google Scholar 

  12. S. Suhag, D. Chhabra, Design of a closed channel fluid flow system for piezoelectric energy harvesting. Int. J. Eng. Res. Technol. 5(4), 1960–1963 (2018)

    Google Scholar 

  13. N. Kumar, G. Singh, Comparative study of performance about the integrated power quality and optimized framework for smart grid. J. technol. Manag. Innov. 1(3), 33–39 (2022)

    Google Scholar 

  14. D. Chhabra, A. Kumar, Study of PEH configurations & circuitary and techniques for improving PEH efficiency. Int. J. Sci. Res. Dev. 4(3), ( 2016). https://rb.gy/mfx2ww

  15. N. Kumar, G. Singh, Energy efficient load optimization techniques for smart grid with futuristic ideas. Int. J. Eng. Adv. Technol. 9(1), 4327–4331 (2019)

    Article  MathSciNet  Google Scholar 

  16. N. Yadav, D. Chhabra, Design and analysis of closed flow system with varying various parameters of hydrodynamics for PEH. J. Control Instrum. Eng. 3(10), 41–48 (2018)

    Google Scholar 

  17. S. Priya, H.C. Song, Y. Zhou, R. Varghese, A. Chopra, S.G. Kim, I. Kanno et al., A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest. Syst. 4(1), 3–39 (2017). https://doi.org/10.1515/ehs-2016-0028

    Article  Google Scholar 

  18. D. Chhabra, G. Bhushan, P. Chandna, Multilevel optimization for the placement of piezo-actuators on plate structures for active vibration control using modified heuristic genetic algorithm. Ind. Commer. Appl. Smart Struct. Technol. 9059, 152–161 (2014). https://doi.org/10.1117/12.2044913

    Article  Google Scholar 

  19. D. Chhabra, G. Bhushan, P. Chandna, Optimal placement of piezoelectric actuators on plate structures for active vibration control via modified control matrix and singular value decomposition approach using modified heuristic genetic algorithm. Mech. Adv. Mater. Struct. 23(3), 272–280 (2016). https://doi.org/10.5281/zenodo.1336000

    Article  Google Scholar 

  20. S. Kumar, D. Chhabra, Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm. Active Passive Smart Struct. Integr. Syst. 9057, 647–659 (2014). https://doi.org/10.1117/12.2044904

    Article  Google Scholar 

  21. N. Yadav, R. Kumar, Study on piezoelectric ceramic under different pressurization conditions and circuitry. J. Electroceramics (2021). https://doi.org/10.1007/s10832-021-00268-1

    Article  Google Scholar 

  22. N. Yadav, R. Kumar, Harvesting electric energy from waste vibrations of an electric motor using the piezoelectric principle. Recent Adv. Manuf. Autom. Design Energy Technol. (2022). https://doi.org/10.1007/978-981-16-4222-7_104

    Article  Google Scholar 

  23. M. Yadav, D. Yadav, Micro energy generation in different kinds of water flows on lead zirconium titanite/PVDF. Int. J. R & D Eng. Sci. Manag. 9(5), 1–8 (2019)

    Google Scholar 

  24. U. Alvarado, A. Juanicorena, I. Adin, B. Sedano, I. Gutiérrez, J.D. No, Energy harvesting technologies for low-power electronics. Trans. Emerg. Telecommun. Technol. 23(8), 728–741 (2012). https://doi.org/10.1002/ett.2529

    Article  Google Scholar 

  25. N. Yadav, R. Kumar, Energy harvesting from low-frequency sinusoidal vibrations using diaphragm type piezoelectric element. Indian J. Eng. Mater. Sci. 28, 265–270 (2021)

    Google Scholar 

  26. M.F. Mysorewala, L. Cheded, A. Aliyu, Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks. Renew. Sustain. Energy Rev. 157, 112046 (2022). https://doi.org/10.1016/j.rser.2021.112046

    Article  Google Scholar 

  27. M. Yadav, S. Kumar, A. Kaushik, R.K. Garg, D. Chhabra, Modeling and Simulation of Piezo-beam Structure mounted in a Circular Pipe using Laminar Flow as Energy Harvester, unpublished

  28. V.R. Challa, M.G. Prasad, Y. Shi, F.T. Fisher, A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17(1), 015035 (2008). https://doi.org/10.1088/0964-1726/17/01/015035

    Article  Google Scholar 

  29. V. B. C. Sajjanapu, Harvesting Energy from Vortices: A Parametric Study on the Dynamics of Fluid-Structure Interactions (FSI) Using Soap Films. PhD Diss., Iowa State University, 2021. https://rb.gy/dcqwnk

  30. J. Xu, Fluid-structure interaction of circular and square cylinders: dynamics and energy transfer. PhD Diss., Aeronauticos, (2017). https://oa.upm.es/47392/1/JI_XU_XU.pdf

  31. R. Song, C. Hou, C. Yang, X. Yang, Q. Guo, X. Shan, Modeling, validation, and performance of two tandem cylinder piezoelectric energy harvesters in water flow. Micromachines 12(8), 872 (2021). https://doi.org/10.3390/mi12080872

    Article  Google Scholar 

  32. L. Ding, L. Zhang, M.M. Bernitsas, C.C. Chang, Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control. Renew. Energy 85, 1246–1259 (2016). https://doi.org/10.1016/j.renene.2015.07.088

    Article  Google Scholar 

  33. M.N.F.M. Kazim, M.R.M. Rasani, A.A. Abd Rahman, M.Z. Nuawi, Z. Harun, N.A.M. Amin, Triangular separation distance effects on wave electrical energy harvester performance. IOP Conf. Ser. Mater. Sci. Eng. 705(1), 012023 (2019). https://doi.org/10.1088/1757-899X/705/1/012023

    Article  Google Scholar 

  34. X. Yang, X. He, J. Li, S. Jiang, Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping. Smart Mater. Struct. 28(11), 115027 (2019). https://doi.org/10.1088/1361-665X/ab4216

    Article  Google Scholar 

  35. Q. Liao, Z. Zhang, X. Zhang, M. Mohr, Y. Zhang, H.J. Fecht, Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7(6), 917–928 (2014)

    Article  Google Scholar 

  36. A. Srinivasan, S. Bandyopadhyay (eds.), Advances in polymer materials and technology (CRC Press, 2016)

    Google Scholar 

  37. S.S. Srikant, P.S. Mukherjee, R.B. Rao, Microwave energy for waste management. Min. Proc. Technol. 3, 948–953 (2013)

    Google Scholar 

  38. M. Bordoloi, M.S. Kirtania, S. Banerjee, S. Kashyap, Analysis of stress through the thickness of hybrid laminated nanocomposites using finite element method. J. Inst. Eng. (India) Ser. D (2022). https://doi.org/10.1007/s40033-022-00380-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University Institute of Engineering & Technology, Kurukshetra University, India, for providing laboratory facilities to operate the ANSYS software.

Funding

The authors have no funding source/any grant for the proposed research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Chhabra.

Ethics declarations

Conflict of interest

The author denies any financial and individual interest that might influence publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Kumar, S., Kaushik, A. et al. Piezo-beam Structure in a Pipe with Turbulent Flow as Energy Harvester: Mathematical Modeling and Simulation. J. Inst. Eng. India Ser. D 104, 739–752 (2023). https://doi.org/10.1007/s40033-022-00440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00440-z

Keyword

Navigation