Skip to main content
Log in

Effect of Blaine Number on the Physical and Mechanical Properties of Iron Ore Pellets

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

In this work, a comparative study has been done to determine the effect of three different compositions of binders (bentonite and limestone (BLS), limestone and lime (LSL), and cement) and Blaine number on the properties of pellets prepared using the slime generated from the washing of Indian-origin iron ore. The compressive strength (C.S.) value of pellets made with the BLS binder increases first with an increase in Blaine number from 900 to 1470 cm2/g, and then declines with an increase in Blaine number 1800 cm2/g. In pellets made with LSL and cement binders, the C.S. value constantly grows as the Blaine number, drying temperature, and duration increase. Compared to pellets manufactured with BLS and LSL composite binders, cement binders are found to improve the green pellet characteristics and lower the index of indurated pellets. However, the swelling index values of the cement binder pellets are larger than 20, which is relatively high when compared to the standard industrial usage limit of less than 20. In the case of LSL binder pellets, all characteristics are within industry usage norms, except for the reducing index, which is a little over industrial limitations (> 65%). FactSage 6.4 software is used for thermodynamic calculations of the phases formed during the induration process. Based on the obtained results, LSL is found to be the most suitable binder combination at Blaine number 1800 cm2/g compared to BLS and cement for the pelletization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Dey, M.K. Mohanta, M.C. Goswami, S. Pani, Recovery of iron values from waste manganiferous iron ore fines for pellet making. J. Miner. Mater. Charact. Eng. 2, 513–521 (2014). https://doi.org/10.4236/jmmce.2014.25052

    Article  Google Scholar 

  2. G.P. Singh, R.P. Choudhary, H. Vardhan, M. Aruna, A.B. Akolkar, Iron ore pelletization technology and its environmental impact assessment in the eastern region of India a case study. Procedia Earth Planet. Sci. 11, 582–597 (2015). https://doi.org/10.1016/j.proeps.2015.06.060

    Article  Google Scholar 

  3. S.L. de Moraes, J.R.B.D. Lima, J.B.F. Neto, Effect of colloidal agents in iron ore pelletizing. Miner. Process. Extr. Metall. Rev. 39(6), 414–419 (2018). https://doi.org/10.1080/08827508.2018.1481060

    Article  Google Scholar 

  4. V. Shatokha (ed.), Iron Ores and Iron Oxide Materials (IntechOpen, London, 2018), pp. 1–255. https://doi.org/10.5772/intechopen.69715

    Book  Google Scholar 

  5. S.N. Sahu, P.K. Baskey, S.D. Barma, S. Sahoo, B.C. Meikap, S.K. Biswal, Pelletization of synthesized magnetite concentrate obtained by magnetization roasting of Indian low-grade B.H.Q. Iron ore. Powder Technol. 374, 190–200 (2020). https://doi.org/10.1016/j.powtec.2020.07.004

    Article  Google Scholar 

  6. S. Devasahayam, A novel iron ore pelletization for increased strength under ambient conditions. Sustain. Mater. Technol. 17, e00069 (2018). https://doi.org/10.1016/j.susmat.2018.e00069

    Article  Google Scholar 

  7. J.A. Halt, S.C. Roache, S.K. Kawatra, Cold bonding of iron ore concentrates pellets. Miner. Process. Extr. Metall. Rev. 36(3), 192–197 (2015). https://doi.org/10.1080/08827508.2013.873863

    Article  Google Scholar 

  8. J. Pal, S. Ghorai, T. Venugopalan, Effect of high Blaine iron ore fines in hematite ore pelletization for the blast furnace. Miner. Process. Extr. Metall. (2018). https://doi.org/10.1080/25726641.2018.1505208

    Article  Google Scholar 

  9. S. Patra, V. Rayasam, Pelletization of iron ore fines with parameter optimization through box-Behnken design. MOJ Mining Met. 1(2), 72–77 (2018). https://doi.org/10.15406/mojmm.2018.1.00011

    Article  Google Scholar 

  10. D. Zhu, J. Pan, L. Lu, R.J. Holmes, Iron Ore, Mineralogy, Processing, and Environmental Sustainability (Woodhead Publishing, Cambridge, 2015), pp. 435–473. https://doi.org/10.1016/B978-1-78242-156-6.00015-0

    Book  Google Scholar 

  11. J. Pal, C. Arunkumar, Y. Rajshekhar, G. Das, M.C. Goswami, T. Venugopalan, Development on iron ore pelletization using calcined lime and MgO combined flux replacing limestone and bentonite. ISIJ Int. 54(10), 2169–2178 (2014). https://doi.org/10.2355/isijinternational.54.2169

    Article  Google Scholar 

  12. P. Prusti, K. Barik, N. Dash, S.K. Biswal, B.C. Meikap, Effect of limestone and dolomite flux on the quality of pellets using high LOI iron ore. Powder Technol. 379, 154–164 (2021). https://doi.org/10.1016/j.powtec.2020.10.063

    Article  Google Scholar 

  13. T. Wangle, V. Tyrpekl, S. Cagno, T. Delloye, O. Larcher, T. Cardinaels, J. Vleugels, M. Verwerft, The effect of precipitation and calcination parameters on oxalate-derived ThO2 pellets. J. Nucl. Mater. 495, 128–137 (2017). https://doi.org/10.1016/j.jnucmat.2017.07.046

    Article  Google Scholar 

  14. J. Pal, S. Ghorai, S. Agarwal, B. Nandi, T. Chakraborty, G. Das, S. Prakash, Effect of Blaine fineness on the quality of hematite iron ore pellets for the blast furnace. Miner. Process. Extr. Metall. Rev. 36(2), 83–91 (2015). https://doi.org/10.1080/08827508.2013.873862

    Article  Google Scholar 

  15. M. Saedi, K. Behfarnia, H. Soltanian, The effect of the Blaine fineness on the mechanical properties of the alkali-activated slag cement. J. Build. Eng. 26, 100897 (2019). https://doi.org/10.1016/j.jobe.2019.100897

    Article  Google Scholar 

  16. J.A. Halt, S.K. Kawatra, Review of organic binders for iron ore concentrate agglomeration. Mining, Metall. Explor. 31(2), 73–94 (2014). https://doi.org/10.1007/BF03402417

    Article  Google Scholar 

  17. S.L. de Moraes, J.R.B. de Lima, T.R. Ribeiro, Iron ore pelletizing process: an overview, in Iron Ores and Iron Oxide Materials. (Intechopen, London, 2018). https://doi.org/10.5772/intechopen.73164

    Chapter  Google Scholar 

  18. F.W. Frazer, H. Westenberger, K.H. Boss, W. Thumm, The relationship between basicity and swelling on the reduction of iron ore pellets. Int. J. Miner. Process. 2(4), 353–365 (1975). https://doi.org/10.1016/0301-7516(75)90028-9

    Article  Google Scholar 

  19. O. Sivrikaya, A.I. Arol, Alternative binders to bentonite for iron ore pelletizing: PART I: effects on physical and mechanical properties. HOLOS 3, 94–103 (2019). https://doi.org/10.15628/holos.2014.1758

    Article  Google Scholar 

  20. S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, R. Venugopal, Effect of pyroxenite flux on the quality and microstructure of hematite pellets. Int. J. Miner. Process. 96(1–4), 45–53 (2010). https://doi.org/10.1016/j.minpro.2010.06.002

    Article  Google Scholar 

  21. U. Srivastava, S.K. Kawatra, T.C. Eisele, Study of organic and inorganic binders on strength of iron oxide pellets. Metall. Mater. Trans. B. 44(4), 1000–1009 (2013). https://doi.org/10.1007/s11663-013-9838-4

    Article  Google Scholar 

  22. V.M. Chizhikova, R.M. Vainshtein, S.N. Zorin, T.I. Zainetdinov, G.A. Zinyagin, A.A. Shevchenko, Production of iron-ore pellets with an organic binder. Metallurgist 47(3), 141–146 (2003). https://doi.org/10.1023/A:1024955013924

    Article  Google Scholar 

  23. H.E. Goetzman, R.L. Bleifuss, J. Engesser, Investigation of carboxymethyl cellulose binders for taconite pelletizing, in S.M.E. Annual Meeting, January, Phoenix, AZ, USA, 1988, pp. 88–111

  24. O. Sivrikaya, A.I. Arol, Use of colemanite as an additive in iron ore pelletizing, in 11th International Mineral Processing Symposium, October, Antalya, Turkey, 2008, pp. 1121–1127.

  25. C.C. da Cunha, G.M. da Costa, Water determination in iron oxyhydroxides and iron ores by Karl Fischer titration. Phys. Chem. Miner. 43(10), 739–748 (2016). https://doi.org/10.1007/s00269-016-0830-9

    Article  Google Scholar 

  26. O.S.M.A.N. Sivrikaya, A.I. Arol, An investigation of the relationship between compressive strength and dust generation potential of magnetite pellets. Int. J. Miner. Process. 123, 158–164 (2013). https://doi.org/10.1016/j.minpro.2013.06.006

    Article  Google Scholar 

  27. D. Safonov, T. Kinnarinen, A. Häkkinen, An assessment of Blaine’s air permeability method to predict the filtration properties of iron ore concentrates. Miner. Eng. 160, 106690 (2020). https://doi.org/10.1016/j.mineng.2020.106690

    Article  Google Scholar 

  28. Gundewar, C.S., Iron & Steel—Vision 2020, Aqua Process, Nagpur, 2011, pp. 88–104

  29. L.M. Tavares, R.F. de Almeida, Breakage of green iron ore pellets. Powder Technol. 366, 497–507 (2020). https://doi.org/10.1016/j.powtec.2020.02.074

    Article  Google Scholar 

  30. P.P. Cavalcanti, H.A. Petit, A.S. Thomazini, R.M. de Carvalho, L.M. Tavares, Modeling of degradation by impact of individual iron ore pellets. Powder Technol. (2021). https://doi.org/10.1016/j.powtec.2020.10.037

    Article  Google Scholar 

  31. P.P. Cavalcanti, L.M. Tavares, Statistical analysis of fracture characteristics of industrial iron ore pellets. Powder Technol. 325, 659–668 (2018). https://doi.org/10.1016/j.powtec.2017.11.062

    Article  Google Scholar 

  32. P. Ranjan, J. Pal, Salt solution treatment to prevent the low-temperature reduction degradation of the haematite pellet. Ironmak. Steelmak. 43(9), 688–696 (2016). https://doi.org/10.1080/03019233.2016.1138668

    Article  Google Scholar 

  33. H.M. Ahmed, N. Viswanathan, B. Bjorkman, Composite pellets–the potential raw material for iron-making. Steel Res. Int. 85(3), 293–306 (2014). https://doi.org/10.1002/srin.201300072

    Article  Google Scholar 

  34. T.C. Eisele, S.K. Kawatra, A review of binders in iron ore pelletization. Miner. Process. Extr. Metall. Rev. 24(1), 1–90 (2003). https://doi.org/10.1080/08827500306896

    Article  Google Scholar 

  35. S. Hayashi, Y. Iguchi, Abnormal swelling during the reduction of binder bonded iron ore pellets with CO-CO2 gas mixtures. ISIJ Int. 43(9), 1370–1375 (2003). https://doi.org/10.2355/isijinternational.43.1370

    Article  Google Scholar 

  36. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases. Calphad 26(2), 189–228 (2002). https://doi.org/10.1016/S0364-5916(02)00035-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Research & Development Centre for Iron & Steel (RDCIS) SAIL, Ranchi, India, for arranging and sending Iron ore slime sample from Barsua mine to CSIR-National Metallurgical Laboratory, Jamshedpur, India for R & D. The authors would also like to thank National Institute of Technology, Jamshedpur, India and CSIR-National Metallurgical Laboratory, Jamshedpur, for technically and administratively encouraging this work and according to permission to publish the paper.

Funding

The author(s) received no financial support for this article’s research, authorship, and/or publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Gorai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorai, D.K., Saida, S., Mehta, K.D. et al. Effect of Blaine Number on the Physical and Mechanical Properties of Iron Ore Pellets. J. Inst. Eng. India Ser. D 104, 131–141 (2023). https://doi.org/10.1007/s40033-022-00374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00374-6

Keywords

Navigation