Skip to main content
Log in

Safety Chart for the Identification of Stability of Internal Dragline Dumps

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Overburden dump is an integral part of opencast coal mining, and its stability is essential for the safe and economic extraction of the material. This paper discusses the stability analysis of internal dragline dump in dry condition using Monte Carlo simulation. A sensitivity analysis was performed to identify the most critical geometrical parameters—coal-rib height, slope angle and height of the bench between the coal-rib roof and dragline sitting level—considering the variability of geometrical parameters of the internal dragline dump. The probabilistic analysis of the dragline dump was conducted using various combinations of obtained critical parameters with the help of finite element method-based software RS2 (Version 9.0). By using the simulation results, a safety chart is proposed to estimate the stability of internal dragline dump in opencast operations, which is categorized into three zones; fail, vulnerable and safe. Each zone defines the amount of risk associated with a particular dump slope profile. The safety chart is validated from the previous research works, and the stability conditions of the internal dragline dumps are found similar in the safety chart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Gupta, R. Rai, A. Jaiswal, B.K. Shrivastva, Sensitivity analysis of coal rib stability for internal mine dump in opencast mine by finite element modelling. Geotech. Geol. Eng. 32(3), 705–712 (2014)

    Article  Google Scholar 

  2. R. Rai, S. Kalita, T. Gupta, B.K. Shrivastva, Sensitivity analysis of internal dragline dump stability: finite element analysis. Geotech. Geol. Eng. 30(6), 1397–1404 (2012)

    Article  Google Scholar 

  3. C.O. Okagbue, Stability of waste spoils in an area strip mine—geological and geotechnical considerations. Earth Surf. Proc. Land. 12(3), 289–300 (1987)

    Article  Google Scholar 

  4. N.U.R.A.Y. Demirel, Effects of the rock mass parameters on the dragline excavation performance. J. Min. Sci. 47(4), 441–449 (2011)

    Article  MathSciNet  Google Scholar 

  5. B.G. Richards, M.A. Coulthard, C.T. Toh, Analysis of slope stability at Goonyella Mine. Can. Geotech. J. 18(2), 179–194 (1981)

    Article  Google Scholar 

  6. S. Sharma, S. Sengupta, I. Roy, Identification of failure surfaces in dragline dumps of opencast coal mines. ARPN J. Earth Sci. 4(2). ISSN 2305-493X (2015)

  7. B. Scott, P.G. Ranjith, S.K. Choi, M. Khandelwal, A review on existing opencast coal mining methods within Australia. J. Min. Sci. 46(3), 280–297 (2010)

    Article  Google Scholar 

  8. S. Sengupta, I. Roy, Study of internal dump stability of Dudhichua open cast project, Northern Coalfields Limited, India. J. Inst. Eng. India Ser. D 96(1), 67–75 (2015)

    Article  Google Scholar 

  9. R.C. Speck, S.L. Huang, E.B. Kroeger, Large-scale slope movements and their affect on spoil-pile stability in Interior Alaska. Int. J. Surf. Min. Reclam. 7(4), 161–166 (1993)

    Article  Google Scholar 

  10. O. Kasmer, R. Ulusay, C. Gokceoglu, Spoil pile instabilities with reference to a strip coal mine in Turkey: mechanisms and assessment of deformations. Environ. Geol. 49(4), 570–585 (2006)

    Article  Google Scholar 

  11. Y. Singh, V. Sharma, S.K. Pandita, G.M. Bhat, K.K. Thakur, S.S. Kotwal, Investigation of landslide at Sangaldan near tunnel-47, on Katra-Qazigund railway track, Jammu and Kashmir. J. Geol. Soc. India 84(6), 686–692 (2014)

    Article  Google Scholar 

  12. A. Kainthola, D. Verma, S.S. Gupte, T.N. Singh, A coal mine dump stability analysis—a case study. Geomaterials 1(01), 1 (2011)

    Article  Google Scholar 

  13. S. Sharma, I. Roy, Slope failure of waste rock dump at Jayant opencast mine, India: a case study. Int. J. Appl. Eng. Res. 10(13), 33006–33012 (2015)

    Google Scholar 

  14. A.K. Dash, Analysis of accidents due to slope failure in Indian opencast coal mines. Curr. Sci. 117(2), 304 (2019)

    Article  Google Scholar 

  15. P.K. Behera, K. Sarkar, A.K. Singh, A.K. Verma, T.N. Singh, Dump slope stability analysis—a case study. J. Geol. Soc. India 88(6), 725–735 (2016)

    Article  Google Scholar 

  16. Northern Coalfields Limited, CIL, India. (2020). http://nclcil.in/HI/page.php?pid=2

  17. S. Sengupta, S. Sharma, I. Roy, Stability analysis of overburden internal dump material of Amlohri opencast coal mine, India. ARPN J. Earth Sci. 5(1), 50–57 (2016)

    Google Scholar 

  18. V.K. Singh, Geotechnical study of coal rib and associated dump failure at a coal mine. in ISRM International Symposium-6th Asian Rock Mechanics Symposium. International Society for Rock Mechanics and Rock Engineering (2010)

  19. H. Basahel, H. Mitri, Probabilistic assessment of rock slopes stability using the response surface approach—a case study. Int. J. Min. Sci. Technol. 29(3), 357–370 (2019)

    Article  Google Scholar 

  20. C.E. Papadopoulos, H. Yeung, Uncertainty estimation and Monte Carlo simulation method. Flow Meas. Instrum. 12(4), 291–298 (2001)

    Article  Google Scholar 

  21. A. Ray, Kumar, R.C. Kumar, A.K. Bharati, R. Rai, T.N. Singh, Hazard chart for identification of potential landslide due to the presence of residual soil in the Himalayas. Indian Geotech. J. (2019). https://doi.org/10.1007/s40098-019-00401-6

  22. V.P. Singh, Reliability-based stability assessment of natural slopes. Indian Geotech. J. 49(6), 698–707 (2019)

    Article  Google Scholar 

  23. D.C. Tobutt, Monte Carlo simulation methods for slope stability. Comput. Geosci. 8(2), 199–208 (1982)

    Article  Google Scholar 

  24. R.E. Hammah, T.E. Yacoub, J.H. Curran, Probabilistic slope analysis with the finite element method. American Rock Mechanics Association, ARMA 09-149 (2008)

  25. H. El-Ramly, N.R. Morgenstern, D.M. Cruden, Probabilistic slope stability analysis for practice. Can. Geotech. J. 39(3), 665–683 (2002)

    Article  Google Scholar 

  26. R. Mellah, G. Auvinet, F. Masrouri, Stochastic finite element method applied to non-linear analysis of embankments. Probab. Eng. Mech. 15(3), 251–259 (2000)

    Article  MATH  Google Scholar 

  27. P.M. Bowman, H.G. Gilchrist, Waste dump instability and its operational impact for a Canadian Plains lignite mine. in Proceedings of the International Symposium on Stability in Coal Mining. Vancouver, British Colombia, Canada (1978). pp. 381–394

  28. A. Sharma, R. Rai, B.K. Shrivastva, Stability analysis of internal mine waste dump by numerical simulation. Indian J. Min. Eng. 50(11), 232–238 (2011)

    Google Scholar 

  29. A. Chakraborty, D. Goswami, State of the art: three-dimensional (3D) slope-stability analysis. Int. J. Geotech. Eng. 10(5), 493–498 (2016)

    Article  Google Scholar 

  30. J.M. Duncan, State of the art: limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng. 122(7), 577–596 (1996)

    Article  Google Scholar 

  31. D.P. Kanungo, A. Pain, S. Sharma, Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas. Nat. Hazards 69(1), 1–24 (2013)

    Article  Google Scholar 

  32. T. Matsui, K.C. San, Finite element slope stability analysis by shear strength reduction technique. Soils Found. 32(1), 59–70 (1992)

    Article  Google Scholar 

  33. S. Mbarka, J. Baroth, M. Ltifi, H. Hassis, F. Darve, Reliability analyses of slope stability: homogeneous slope with circular failure. Eur. J. Environ. Civ. Eng. 14(10), 1227–1257 (2010)

    Google Scholar 

  34. B. Valley, D. Duff, Probabilistic analyses in Phase2 8.0, Center for Excellence in Mining Innovation, https://www.rocscience.com/help/rs2/pdf_files/theory/Probabilistic_Analysis.pdf

  35. E.H. Vanmarcke, Probabilistic stability analysis of earth slopes. Eng. Geol. 16(1–2), 29–50 (1980)

    Article  Google Scholar 

  36. Rocscience (2019). https://www.rocscience.com

  37. E.M. Dawson, W.H. Roth, A. Drescher, Slope stability analysis by strength reduction. Geotechnique 49(6), 835–840 (1999)

    Article  Google Scholar 

  38. D.V. Griffiths, P.A. Lane, Slope stability analysis by finite elements. Geotechnique 49(3), 387–403 (1999)

    Article  Google Scholar 

  39. S. Sengupta, S. Sharma, I. Roy, Investigation of Shear Strength Parameters of Highwall Rock Slopes and Overburden Dump Mass in Opencast Coal Mines in Opencast Coal Mines. ISSN: 2347-601X, 7(01). (2014). www.ijemhs.com

  40. M.A. Tatang, W. Pan, R.G. Prinn, G.J. McRae, An efficient method for parametric uncertainty analysis of numerical geophysical models. J. Geophys. Res. Atmos. 102(D18), 21925–21932 (1997)

    Article  Google Scholar 

  41. E. Castillo, R. Minguez, C. Castillo, Sensitivity analysis in optimization and reliability problems. Reliab. Eng. Syst. Saf. 93(12), 1788–1800 (2008)

    Article  Google Scholar 

  42. T. Lenhart, K. Eckhardt, N. Fohrer, H.G. Frede, Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth Parts A/B/C 27(9–10), 645–654 (2002)

    Article  Google Scholar 

  43. I. Roy, S. Sengupta, A handbook on dragline dump profiles in surface coal mines of India. (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar Bharati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharati, A.K., Ray, A., Rai, R. et al. Safety Chart for the Identification of Stability of Internal Dragline Dumps. J. Inst. Eng. India Ser. D 101, 173–186 (2020). https://doi.org/10.1007/s40033-020-00225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-020-00225-2

Keywords

Navigation