Skip to main content

Advertisement

Log in

Thermodynamic and Environmental Assessment of Low-GWP Alternative Refrigerants for Domestic Cooling

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Nearly two billion air-conditioning (AC) units are currently being used for space cooling worldwide. The majority of these ACs use R134a as the working fluid, a greenhouse gas (GHG) with a global warming potential (GWP) of 1300 kg-CO2-eq. According to the rules set by the world environment safety organizations, the GWP of domestic air-conditioning systems must not exceed 750 kg-CO2-eq. Hence, the R134a must be phased out by 2025, and an alternative refrigerant with similar thermodynamic properties yet low GWP is required. Therefore, the authors have investigated several potential binary/ternary refrigerant blends in this study. Among the studied refrigerants, R445A, R30A, and NPB2 (newly proposed blend: 8% R152a + 92% R1234yf) can reduce 90–99% global warming impact (more than 200 million tonnes of CO2 emission equivalent) caused by the domestic air-conditioning systems every year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC:

Air-conditioning

AHRI:

Air-conditioning, heating, and refrigeration institute

COP:

Coefficient of performance

E :

Energy or power (kW)

GWP:

Global warming potential (100 years integration) (kg-CO2-eq)

h :

Specific enthalpy (kJ kg–1)

l v :

Latent heat of vaporization (kJ kg–1)

ref :

Mass flow rate of refrigerant (kg s–1)

NPB:

Newly proposed blend

S :

Entropy (kJ kg–1 K–1)

T :

Temperature (°C)

TEWI:

Total equivalent warming impact (kg eq. CO2 h–1)

:

Cooling capacity (kW)

VCRS:

Vapor compression refrigeration system

W com :

Work of compression (kJ kg–1)

ρ :

Density of refrigerant (kg m–3)

η :

Efficiency (%)

υ :

Volumetric flow rate (l s–1)

con:

Condenser

com:

Compressor

eva:

Evaporator

isen:

Isentropic

p:

Power

ref:

Refrigerant

sub:

Subcooling

sup:

Superheating

References

  1. D. Sailor, Energy 28, 941 (2003)

    Article  Google Scholar 

  2. T.H. Rupam, M.A. Islam, A. Pal, A. Chakraborty, B.B. Saha, Int. J. Heat Mass Transf. 144 (2019)

  3. S. Chattopadhyay, S.J. Ghosh, Inst. Eng. Ser. C 101, 643–650 (2020)

    Article  Google Scholar 

  4. S. Soni, P. Mishra, G. Maheshwari, D.S. Verma, Mater. Today Proc. 56, 1600 (2022)

    Article  Google Scholar 

  5. M. Yang, H. Zhang, Z. Meng, Y. Qin, Appl. Therm. Eng. 146, 540 (2019)

    Article  Google Scholar 

  6. A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, B. Peris, Int. J. Refrig. 51, 52 (2015)

    Article  Google Scholar 

  7. D. Cai, Z. Hao, H. Xu, G. He, Int. J. Refrig. 137, 53 (2022)

    Article  Google Scholar 

  8. S. Kondo, K. Takizawa, A. Takahashi, K. Tokuhashi, A. Sekiya, J. Hazard. Mater. 148, 640 (2007)

    Article  Google Scholar 

  9. S. Benhadid-Dib, A. Benzaoui, Energy Procedia 6, 347 (2011)

    Article  Google Scholar 

  10. N. Abas, A.R. Kalair, N. Khan, A. Haider, Z. Saleem, M.S. Saleem, Renew. Sustain. Energy Rev. 90, 557 (2018)

    Article  Google Scholar 

  11. L. Vaitkus, V. Dagilis, Int. J. Refrig. 76, 160 (2017)

    Article  Google Scholar 

  12. Y. Fang, S. Croquer, S. Poncet, Z. Aidoun, Y. Bartosiewicz, Int. J. Refrig. 77, 87 (2017)

    Article  Google Scholar 

  13. I.H. Bell, P.A. Domanski, M.O. McLinden, G.T. Linteris, Int. J. Refrig. 104, 484 (2019)

    Article  Google Scholar 

  14. Y. Heredia-Aricapa, J.M. Belman-Flores, A. Mota-Babiloni, J. Serrano-Arellano, J.J. García-Pabón, Int. J. Refrig. 111, 113 (2020)

    Article  Google Scholar 

  15. Honeywell Refrigerant, Solstice® N13 (R-450A), https://www.honeywell-refrigerants.com/europe/product/solstice-n13. Accessed 25 May 2022

  16. M.A. Islam, B.B. Saha, in Sol. Energy, edited by H. Tyagi (Springer Nature Singapore Pte Ltd., 2020), pp. 147–177

  17. X. Cao, C.-L. Zhang, Z.-Y. Zhang, Int. J. Refrig. 74, 283 (2017)

    Article  Google Scholar 

  18. M.A. Islam, Thermophysical and Adsorption Characterization of Functional and Pore Modified Adsorbents. Kyushu University (2019)

  19. M.A. Islam, K. Srinivasan, K. Thu, B.B. Saha, Int. J. Hydr. Energy 42, 26973 (2017)

    Article  Google Scholar 

  20. J.A. Kohler, G.C. Briley, E.M. Clark, D.R. Dorman, S.W. Duda, D.M. Halel, D.R. Kuespert, J.T. Parker, D.T. Reindl, W.V Richards, K.M. Schoonover, E.F. Troy, J.I. Vucci, G.W. Westermeyer, J.F. Hogan, F.E. Jakob, ANSI/ASHRAE Standard 15-2016; Safety Standard for Refrigeration Systems (2016)

  21. E.W Lemmon, I..H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, Gaithersburg. 2018

  22. D. Archer, J. Geophys. Res. 110, C09S05 (2005)

  23. P.M.M.T.F. Stocker, D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Contribution of Working Group I (2013)

  24. M.A. Islam, S. Mitra, K. Thu, B.B. Saha, Int. J. Refrig. 131, 568 (2021)

    Article  Google Scholar 

Download references

Funding

The authors did not receive any external funding to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut Baran Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Rupam, T.H., Hosan, S. et al. Thermodynamic and Environmental Assessment of Low-GWP Alternative Refrigerants for Domestic Cooling. J. Inst. Eng. India Ser. C 104, 377–383 (2023). https://doi.org/10.1007/s40032-023-00927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-00927-y

Keywords

Navigation