Skip to main content
Log in

A Review on Machining of Nickel-Based Superalloys Using Nanofluids Under Minimum Quantity Lubrication (NFMQL)

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Nickel alloys have a wide range of applications in the aerospace, marine, and defense sectors due to their ability to maintain high strength at elevated temperatures, excellent corrosion resistance, and creep rupture strength. However, these distinct properties eventually lead to low machinability. Advancements in cutting tool materials, cooling techniques, coating materials, and coating deposition technologies have attracted researchers in the sustainable machining of nickel alloys using nanofluids under minimum quantity lubrication (NFMQL). This paper presents a comprehensive literature review on the machining of nickel alloys using NFMQL to give proper attention to the various researcher's works. Initially, the preparation of a nanofluid and characteristics of nanoparticles, such as size, shape, type of nanoparticle, and base fluid, are presented. Then a comprehensive review on the machinability of nickel alloys using different nanoparticles and base fluids while milling, turning, grinding, and drilling is discussed with the most frequently used tools under NFMQL conditions. Finally, thermophysical properties, challenges, and future scope while machining nickel-based superalloys are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminum oxide

AlTiN:

Aluminum titanium nitride

AlTiCrN:

Aluminum titanium chromium nitride

BUE:

Built-up edge

CBN:

Cubin boron nitride

CVD:

Chemical vapor deposition

GnP:

Graphene nanoplatelets

hBN:

Hexagonal boron nitride

MG:

Multilayer graphene

MQL:

Minimum quantity lubrication

MQSL:

Minimum quantity solid lubrication

MoS2 :

Molybdenum disulfate

MRR:

Metal removal rate

MWCNTs:

Multiwalled carbon nanotubes

ND:

Nanodiamond

NFMQL:

Nanofluid minimum quantity lubrication

PCBN:

Polycrystalline cubic boron nitride

PVD:

Physical vapor deposition

Ra:

Surface roughness

SiO2 :

Silicon oxide

TiAlN:

Titanium aluminum nitride

TiN:

Titanium nitride

WS2 :

Tungsten disulfate

ZnO:

Zinc oxide

References

  1. T.H. Bassford, J. Hosier, in Nickel and its Alloys, Handbook of Materials Selection, ed. by M. Kutz (Wiley, 2002), p. 235

  2. G. Singh, V. Aggarwal, S. Singh, Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.040

    Article  Google Scholar 

  3. N. Khanna, C. Agrawal, M. Dogra, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.03.104

    Article  Google Scholar 

  4. S. Chaabani, P.J. Arrazola, Y. Ayed, A. Madariaga, A. Tidu, G. Germain, Procedia Manuf. (2020). https://doi.org/10.1016/j.promfg.2020.04.150

    Article  Google Scholar 

  5. S. Şirin, M. Sarıkaya, C.V. Yıldırım, T. Kıvak, Tribol. Int. (2021). https://doi.org/10.1016/j.triboint.2020.106673

    Article  Google Scholar 

  6. E. Şirin, T. Kıvak, C.V. Yıldırım, Tribol. Int. (2021). https://doi.org/10.1016/j.triboint.2021.106894

    Article  Google Scholar 

  7. K. Pandey, S. Datta, Machinability study of Inconel 825 superalloy under nanofluid MQL: Application of sunflower oil as a base cutting fluid with MWCNTs and nano-Al2O3 as additives, in Sustainable Manufacturing and Design (Woodhead Publishing, 2021), p. 151–197

  8. Y. Wang, C. Li, Y. Zhang, B. Li, M. Yang, X. Zhang, S. Guo, G. Liu, Tribol. Int. (2016). https://doi.org/10.1016/j.triboint.2016.03.023

    Article  Google Scholar 

  9. B. Li, C. Li, Y. Zhang, Y. Wang, D. Jia D, M. Yang M, N. Zhang, Q. Wu, Z. Han, K. Sun, J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.03.213

  10. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, L. Dong, J. Wang, Int. J. Precis. Eng. Manuf. (2018). https://doi.org/10.1007/s40684-018-0035-4

    Article  Google Scholar 

  11. K. Venkatesan, A.T. Mathew, S. Devendiran, N.M. Ghazaly, S. Sanjith, R. Raghul, Procedia Manuf. (2019). https://doi.org/10.1016/j.promfg.2019.02.055

    Article  Google Scholar 

  12. F. Günan, T. Kıvak, C.V. Yıldırım, M. Sarıkaya, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.07.018

    Article  Google Scholar 

  13. S. Şirin, T. Kıvak, Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.04.042

    Article  Google Scholar 

  14. C.V. Yıldırım, M. Sarıkaya, Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.02.027

    Article  Google Scholar 

  15. K. Venkatesan, S. Devendiran, N.M. Ghazaly, Procedia Manuf. (2019). https://doi.org/10.1016/j.promfg.2019.02.014

    Article  Google Scholar 

  16. C.V. Yıldırım, Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.05.014

    Article  Google Scholar 

  17. K. Venkatesan, S. Devendiran, N.M. Ghazaly, R. Rahul, T. Mughilan, Procedia Manuf. (2019). https://doi.org/10.1016/j.promfg.2019.02.039

    Article  Google Scholar 

  18. B.C. Behera, S. Ghosh, P.V. Rao, Tribol. Int. (2016). https://doi.org/10.1016/j.triboint.2016.04.019

    Article  Google Scholar 

  19. R. Bertolini, A. Ghiotti, S. Bruschi, Wear (2021). https://doi.org/10.1016/j.wear.2021.203656

    Article  Google Scholar 

  20. F. Pashmforoush, R.D. Bagherinia, J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.01.003

    Article  Google Scholar 

  21. D. Jia, C. Li, Y. Zhang, M. Yang, Y. Wang, S. Guo, H. Cao, Precis. Eng. (2017). https://doi.org/10.1016/j.precisioneng.2017.05.012

    Article  Google Scholar 

  22. H. Hegab, A. Salem, S. Rahnamayan, H.A. Kishawy, Appl. Soft Comput. (2021). https://doi.org/10.1016/j.asoc.2021.107416

    Article  Google Scholar 

  23. M. Sarıkaya, S. Şirin, C.V. Yıldırım, T. Kıvak, M.K. Gupta, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.02.122

    Article  Google Scholar 

  24. S. Ghosh, P.V. Rao, J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2019.05.196

    Article  Google Scholar 

  25. M.K. Gupta, Q. Song, Z. Liu, M. Sarikaya, M. Jamil, M. Mia, A.K. Singla, A.M. Khan, N. Khanna, D.Y. Pimenov, J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2020.125074

    Article  Google Scholar 

  26. M.K. Sinha, R. Madarkar, S. Ghosh, P.V. Rao, J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2016.09.212

    Article  Google Scholar 

  27. R. Bertolini, L. Gong, A. Ghiotti, S. Bruschi, Procedia CIRP (2020). https://doi.org/10.1016/j.procir.2020.02.021

    Article  Google Scholar 

  28. M.A. Haq, S. Hussain, M.A. Ali, M.U. Farooq, N.A. Mufti, C.I. Pruncu, A. Wasim, J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.127463

    Article  Google Scholar 

  29. M.A. Ali, A.I. Azmi, M.N. Murad, M.Z. Zain, A.N. Khalil, N.A. Shuaib, Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2019.106106

    Article  Google Scholar 

  30. M. Amrita, B. Kamesh, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.04.568

    Article  Google Scholar 

  31. L. Sterle, D. Mallipeddi, P. Krajnik, F. Pušavec, Procedia CIRP (2020). https://doi.org/10.1016/j.procir.2020.02.032

    Article  Google Scholar 

  32. R. de Souza Ruzzi, R.L. de Paiva, R.V. Gelamo, A.R. Machado, R.B. da Silva, Wear (2021). https://doi.org/10.1016/j.wear.2021.203697

  33. D. De Oliveira, R.B. Da Silva, R.V. Gelamo, Wear (2019). https://doi.org/10.1016/j.wear.2019.01.114

    Article  Google Scholar 

  34. R.L. Virdi, S.S. Chatha, H. Singh, Tribol. Int. (2021). https://doi.org/10.1016/j.triboint.2020.106581

    Article  Google Scholar 

  35. J.J. Teo, E.U. Olugu, S.P. Yeap, A.M. Abdelrhman, O.C. Aja, Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2021.02.480

    Article  Google Scholar 

  36. U.M. Paturi, Y.R. Maddu, R.R. Maruri, S.K. Narala, Procedia CIRP (2016). https://doi.org/10.1016/j.procir.2016.01.082

    Article  Google Scholar 

  37. R.L. Virdi, S.S. Chatha, H. Singh, J. Manuf. Process. (2020). https://doi.org/10.1016/j.jmapro.2020.09.056

    Article  Google Scholar 

  38. M.A. Makhesana, K.M. Patel, B.K. Mawandiya, Met. Powder Rep. (2021). https://doi.org/10.1016/j.mprp.2020.08.008

    Article  Google Scholar 

  39. R.L. Virdi, S.S. Chatha, H. Singh, Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.802

    Article  Google Scholar 

  40. C.V. Yıldırım, T. Kıvak, M. Sarıkaya, F. Erzincanlı, Arab J Sci Eng (2017). https://doi.org/10.1007/s13369-017-2594-z

    Article  Google Scholar 

  41. S. Sarkar, S. Datta, Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-05058-5

    Article  Google Scholar 

  42. S. Bevara, M. Amrita, S. Kumar, B. Kamesh, Effect of graphene nanofluid on machining inconel 718, in Advances in Applied Mechanical Engineering (Springer, Singapore, 2020), p. 913–920

  43. B. Li, C. Li, Y. Zhang, Y. Wang, M. Yang, D. Jia, N. Zhang, Q. Wu, Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9324-7

    Article  Google Scholar 

  44. L. Gong, R. Bertolini, A. Ghiotti, N. He, S. Bruschi, Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05626-x

    Article  Google Scholar 

  45. K. Khanafer, A. Eltaggaz, I. Deiab, H. Agarwal, A. Abdul-Latif, Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05112-4

    Article  Google Scholar 

  46. H. Hegab, U. Umer, M. Soliman, H.A. Kishawy, Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-018-1825-0

    Article  Google Scholar 

  47. V. Vasu, G. Pradeep Kumar Reddy, Proc. Inst. Mech. Eng., Part N: J. Nanomater. Nanoeng. Nanosyst. (2011). https://doi.org/10.1177/1740349911427520

  48. A. Faheem, T. Husain, F. Hasan, Q. Murtaza, Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1802563

    Article  Google Scholar 

  49. H. Hegab, H.A. Kishawy J. Manuf. Mater. Processing (2018) https://doi.org/10.3390/jmmp2030050

  50. M.K. Gupta, M. Jamil, X. Wang, Q. Song, Z. Liu, M. Mia, H. Hegab, A.M. Khan, Materials (2019). https://doi.org/10.3390/ma12172792

    Article  Google Scholar 

  51. T. Kıvak, M. Sarıkaya, C.V. Yıldırım, S. Şirin, J. Manuf. Process. (2020). https://doi.org/10.1016/j.jmapro.2020.05.017

    Article  Google Scholar 

  52. T. Singh, J.S. Dureja, M. Dogra, M.S. Bhatti, Int. J. Precis. Eng. Manuf. (2018). https://doi.org/10.1007/s12541-018-0196-7

    Article  Google Scholar 

  53. M.A. Makhesana, K.M. Patel, Process Integr. Optim. Sustain. (2021). https://doi.org/10.1007/s41660-021-00171-w

    Article  Google Scholar 

  54. M. Wojtewicz, K. Nadolny, W. Kapłonek, K. Rokosz, D. Matýsek, M. Ungureanu, Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-2935-4

    Article  Google Scholar 

  55. A. Marques, M.P. Suarez, W.F. Sales, A.R. Machado ÁR, J. Mater. Process. Technol. (2019). https://doi.org/10.1016/j.jmatprotec.2018.11.032

  56. M. Seyedzavvar, M. Shabgard, M. Mohammadpourfard, Mach. Sci. Technol. (2019). https://doi.org/10.1080/10910344.2019.1575403

  57. S. Chinchanikar, S.S. Kore, P. Hujare, J. Manuf. Process. (2021). https://doi.org/10.1016/j.jmapro.2021.05.028

    Article  Google Scholar 

  58. K. Venkatesan, S. Devendiran, K. Nishanth Purusotham, V.S. Praveen, Mater. Manuf. Process. (2020). https://doi.org/10.1080/10426914.2020.1729990

  59. S.D. Barewar, A. Kotwani, S.S. Chougule, D.R. Unune, J. Manuf. Process. (2021). https://doi.org/10.1016/j.jmapro.2021.04.017

    Article  Google Scholar 

  60. S. Şirin, T. Kıvak, J. Manuf. Processes (2021). https://doi.org/10.1016/j.jmapro.2021.08.038

    Article  Google Scholar 

  61. O. Pereira, A. Celaya, G. Urbikaín, A. Rodríguez, A. Fernández-Valdivielso, L.N. de Lacalle, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.05.118

    Article  Google Scholar 

  62. E. Abd Rahim, H. Sasahara, Performance of palm oil as a biobased machining lubricant when drilling inconel 718, in MATEC Web of Conferences (2017). https://doi.org/10.1051/matecconf/201710103015. Accessed 22 Aug 2022

  63. X. Zhang, C. Li, Y. Zhang, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X. Zhang, Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-8453-3

    Article  Google Scholar 

  64. Y. Zhang, C. Li, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X.J. Zhang, J. Mater. Process. Technol. (2016). https://doi.org/10.1016/j.jmatprotec.2016.01.031

    Article  Google Scholar 

  65. A. Kulandaivel, S. Kumar, Mach. Sci. Technol. (2020). https://doi.org/10.1080/10910344.2020.1765179

  66. M. Sandeep Kumar, V. Vasu, A. Venu Gopal, in Advances in Applied Mechanical Engineering (Springer, Singapore, 2020), p. 1137–1145

  67. L. Gong, R. Bertolini, S. Bruschi, A. Ghiotti, N. He, Int. J. Precis. Eng. Manuf. (2022). https://doi.org/10.1007/s40684-021-00310-1

    Article  Google Scholar 

  68. P.S. Bose, C.S. Rao, K. Jawale, Role of MQL and nanofluids on the machining of Nicrofer C263, in 5th International & 26th All India Manufacturing Technology, Design and Research Conference (2014). https://www.iitg.ac.in/aimtdr2014/PROCEEDINGS/papers/363.pdf. Accessed 22 Aug 2022

  69. O. Gutnichenko, V. Bushlya, S. Bihagen, J.E. Ståhl, Procedia Manuf. (2018). https://doi.org/10.1016/j.promfg.2018.06.091

    Article  Google Scholar 

  70. A. Kotia, P. Rajkhowa, G.S. Rao, S.K. Ghosh, Heat Mass Transfer (2018). https://doi.org/10.1007/s00231-018-2351-1

    Article  Google Scholar 

  71. V.S. Jatti, T.P. Singh, J. Mech. Sci. Technol. (2015). https://doi.org/10.1007/s12206-015-0141-y

    Article  Google Scholar 

  72. X. Tao, Z. Jiazheng, X. Kang, J. Phys. D: Appl. Phys. (1996). http://iopscience.iop.org/0022-3727/29/11/029

  73. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl Phys. (2009). https://doi.org/10.1016/j.cap.2007.12.008

    Article  Google Scholar 

  74. Y. Yang, A. Oztekin, S. Neti, S. Mohapatra, J. Nanopart. Res. (2012). https://doi.org/10.1007/s11051-012-0852-2

    Article  Google Scholar 

  75. R.K. Singh, A.K. Sharma, A.R. Dixit, A.K. Tiwari, A. Pramanik, A. Mandal, J. Cleaner Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.06.104

    Article  Google Scholar 

  76. P. Kalita, A.P. Malshe, S.A. Kumar, V.G. Yoganath, T. Gurumurthy, J. Manuf. Process. (2012). https://doi.org/10.1016/j.jmapro.2012.01.001

    Article  Google Scholar 

  77. S. Khandekar, M.R. Sankar, V. Agnihotri, J. Ramkumar, Mater. Manuf. Processes (2012) https://doi.org/10.1080/10426914.2011.610078

  78. Z. Wang, L. Li, M. Yang, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114204

    Article  Google Scholar 

  79. S. Yi, N. Li, S. Solanki, J. Mo, S. Ding, Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-019-03625-1

    Article  Google Scholar 

  80. A. Yücel, C.V. Yıldırım, M. Sarıkaya, S. Şirin, T. Kıvak, M.K. Gupta, Í.V. Tomaz, J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.09.007

    Article  Google Scholar 

  81. C. Mao, Y. Huang, X. Zhou, H. Gan, J. Zhang, Z. Zhou, Int. J. Adv. Manuf. Technol. (2014). https://doi.org/10.1007/s00170-013-5576-7

    Article  Google Scholar 

  82. C.G. Lee, Y.J. Hwang, Y.M. Choi, J.K. Lee, C. Choi, J.M. Oh, Int. J. Precis. Eng. Manuf. (2009). https://doi.org/10.1007/s12541-009-0013-4

    Article  Google Scholar 

  83. X.L. Wang, Y.L. Yin, G.N. Zhang, W.Y. Wang, K.K. Zhao, Phys. Procedia (2013). https://doi.org/10.1016/j.phpro.2013.11.073

    Article  Google Scholar 

  84. J. Padgurskas, R. Rukuiza, I. Prosyčevas, R. Kreivaitis, Tribol. Int. (2021). https://doi.org/10.1016/j.triboint.2012.10.024

    Article  Google Scholar 

  85. H. Neuffer, H. Ghaednia, R. Jackson, Tribol. Lubr. Technol. 2, 1–3 (2014)

    Google Scholar 

  86. Y.Y. Wu, W.C. Tsui, T.C. Liu, Wear (2007). https://doi.org/10.1016/j.wear.2006.08.021

    Article  Google Scholar 

  87. D. Wu, H. Zhu, L. Wang, L. Liu, Curr. Nanosci. 5(1), 103–112 (2009)

    Article  Google Scholar 

  88. M. Kole, T.K. Dey, Int. J. Therm. Sci. (2011). https://doi.org/10.1016/j.ijthermalsci.2011.03.027

    Article  Google Scholar 

  89. M. Chopkar, P.K. Das, I. Manna, Scr. Mater. (2006). https://doi.org/10.1016/j.scriptamat.2006.05.030

    Article  Google Scholar 

  90. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 10(1115/1), 1571080 (2003)

    Google Scholar 

  91. W. Yu, H. Xie, Y. Li, L. Chen, Particuology (2011). https://doi.org/10.1016/j.partic.2010.05.014

    Article  Google Scholar 

  92. Y. Ding, H. Alias, D. Wen, R.A. Williams, Int. J. Heat Mass Transfer (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009

    Article  Google Scholar 

  93. M. Chopkar, S. Sudarshan, P.K. Das, I. Manna, Metall. Mater. Trans. A (2008). https://doi.org/10.1007/s11661-007-9444-7

    Article  Google Scholar 

  94. X.J. Wang, D.S. Zhu, Chem. Phys. Lett. (2009). https://doi.org/10.1016/j.cplett.2009.01.035

    Article  Google Scholar 

  95. W. Yu, D.M. France, J.L. Routbort, S.U. Choi, Heat Transfer Eng. (2008). https://doi.org/10.1080/01457630701850851

    Article  Google Scholar 

  96. A. Kotia, A. Haldar, R. Kumar, P. Deval, S.K. Ghosh, J. Braz. Soc. Mech. Sci. Eng. (2016). https://doi.org/10.1007/s40430-016-0664-x

    Article  Google Scholar 

  97. A. Asadi, M. Asadi, M. Rezaei, M. Siahmargoi, F. Asadi, Int. Commun. Heat Mass Transfer (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021

    Article  Google Scholar 

  98. M.M.S. Prasad, R.R. Srikant, Int. J. Res. Eng. Technol. 2(11), 381–393 (2013)

    Article  Google Scholar 

  99. A.M. Ibrahim, M.A. Omer, S.R. Das, W. Li, M.S. Alsoufi, A. Elsheikh, Alex. Eng. J. (2022). https://doi.org/10.1016/j.aej.2022.04.029

    Article  Google Scholar 

  100. C.T. Geetha, A.K. Dash, B. Kavya, M. Amrita, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.083

    Article  Google Scholar 

  101. A. Das, O. Pradhan, S.K. Patel, S.R. Das, B.B. Biswal, J. Manuf. Process. (2019). https://doi.org/10.1016/j.jmapro.2019.07.023

    Article  Google Scholar 

  102. S. Roy, A. Ghosh, Int. Manuf. Sci. Eng. Confer. (2013). https://doi.org/10.1115/MSEC2013-1067

    Article  Google Scholar 

  103. P.V. Krishna, R.R. Srikant, D.N. Rao, Int. J. Mach. Tools Manuf. (2010). https://doi.org/10.1016/j.ijmachtools.2010.06.001

    Article  Google Scholar 

  104. P.B. Patole, V.V. Kulkarni, Mater. Today: Proc. (2018). https://doi.org/10.1016/j.matpr.2018.02.221

  105. B. Chu, E. Singh, J. Samuel, N. Koratkar, J. Micro Nano-Manuf. 10(1115/1), 4031135 (2015)

    Google Scholar 

  106. C. Mao, X. Tang, H. Zou, X. Huang, Z. Zhou, Int. J. Precis. Eng. Manuf. (2012). https://doi.org/10.1007/s12541-012-0229-6

    Article  Google Scholar 

  107. P.H. Lee, T.S. Nam, C. Li, S.W. Lee, in 2010 Int. Conf. Manuf. Autom. (2010). https://doi.org/10.1109/icma.2010.27

  108. S. Fitrina, B. Kristiawan, E. Surojo, A.T. Wijayanta, T. Miyazaki, S. Koyama, InAIP Confer. Proc. 10(1063/1), 5024115 (2018)

    Google Scholar 

  109. C. Mao, H. Zou, X. Huang, J. Zhang, Z. Zhou, Int. J. Adv. Manuf. Technol. (2013). https://doi.org/10.1007/s00170-012-4143-y

    Article  Google Scholar 

  110. C. Mao, J. Zhang, Y. Huang, H. Zou, X. Huang, Z. Zhou, Mater. Manuf. Process. (2013). https://doi.org/10.1080/10426914.2013.763970

  111. B. Rahmati, A.A.A.A. Sarhan, M. Sayuti, Int. J. Adv. Manuf. Technol. (2013). https://doi.org/10.1007/s00170-013-5334-x

    Article  Google Scholar 

  112. A.A. Sarhan, M. Sayuti, M. Hamdi, Int. J. Adv. Manuf. Technol. (2012). https://doi.org/10.1007/s00170-012-3940-7

    Article  Google Scholar 

  113. H.B. Kulkarni, M.M. Nadakatti, S.C. Kulkarni, R.M. Kulkarni, Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2019.10.127

    Article  Google Scholar 

  114. M.S. Najiha, M.M. Rahman, K. Kadirgama, J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2015.12.015

    Article  Google Scholar 

  115. B. Rahmati, A.A. Sarhan, M.J. Sayuti, J. Clean. Prod. (2014). https://doi.org/10.1016/j.jclepro.2013.10.048

    Article  Google Scholar 

  116. M. Sayuti, O.M. Erh, A.A. Sarhan, M.J. Hamdi, J. Clean. Prod. (2014). https://doi.org/10.1016/j.jclepro.2013.11.058

    Article  Google Scholar 

  117. J.S. Nam, P.H. Lee, S.W. Lee, Int. J. Mach. Tools Manuf. (2011). https://doi.org/10.1016/j.ijmachtools.2011.04.005

  118. G. Li, S. Yi, N. Li, W. Pan, C. Wen, S. Ding, C.J. Wen, J. Mater. Process. Technol. (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.035

    Article  Google Scholar 

  119. S. Yi, J. Li, J. Zhu, X. Wang, J. Mo, S. Ding, J. Manuf. Process. (2020). https://doi.org/10.1016/j.jmapro.2019.09.038

    Article  Google Scholar 

  120. A. Roushan, U.S. Rao, K. Patra, P. Sahoo, J. Manuf. Process. (2022). https://doi.org/10.1016/j.jmapro.2021.11.030

    Article  Google Scholar 

  121. G. Gaurav, A. Sharma, G.S. Dangayach, M.L. Meena, J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2020.122553

    Article  Google Scholar 

  122. A.S. Kumar, S. Deb, S. Paul, J. Manuf. Process. (2020). https://doi.org/10.1016/j.jmapro.2020.05.032

    Article  Google Scholar 

  123. H. Singh, V.S. Sharma, M. Dogra, Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2019.106113

    Article  Google Scholar 

  124. R. Singh, J.S. Dureja, M. Dogra, M.K. Gupta, M. Mia, Q. Song, Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2020.106183

    Article  Google Scholar 

  125. M.K. Gupta, P.K. Sood, Friction (2017). https://doi.org/10.1007/s40544-017-0141-2

    Article  Google Scholar 

  126. H. Hegab, U. Umer, I. Deiab, H. Kishawy, Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-017-1527-z

    Article  Google Scholar 

  127. H. Hegab, H.A. Kishawy, M.H. Gadallah, U. Umer, I. Deiab, Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-018-2028-4

    Article  Google Scholar 

  128. Y.S. Dambatta, M. Sayuti, A.A. Sarhan, M. Hamdi, S.M. Manladan, M.J. Reddy, J. Manuf. Process. (2019). https://doi.org/10.1016/j.jmapro.2019.03.024

    Article  Google Scholar 

  129. A. Pal, S.S. Chatha, H.S. Sidhu, J. Manuf. Process. (2021). https://doi.org/10.1016/j.jmapro.2021.04.024

    Article  Google Scholar 

  130. D.G. Subhedar, Y.S. Patel, B.M. Ramani, G.S. Patange, Cleaner. Eng. Technol. (2021). https://doi.org/10.1016/j.clet.2021.100104

    Article  Google Scholar 

  131. S.P. Kumar, H.T. Prasada, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.09.834

    Article  Google Scholar 

  132. A. Uysal, F. Demiren, E. Altan, Procedia Soc. Behav. Sci. (2015). https://doi.org/10.1016/j.sbspro.2015.06.384

    Article  Google Scholar 

  133. P. Kalita, A.P. Malshe, K.P. Rajurkar, CIRP Ann. (2012). https://doi.org/10.1016/j.cirp.2012.03.031

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Chinchanikar.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, P., Chinchanikar, S. A Review on Machining of Nickel-Based Superalloys Using Nanofluids Under Minimum Quantity Lubrication (NFMQL). J. Inst. Eng. India Ser. C 104, 183–199 (2023). https://doi.org/10.1007/s40032-022-00905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-022-00905-w

Keywords

Navigation