Skip to main content
Log in

Application of Taguchi Philosophy for Optimization of Design Parameters in a Rectangular Enclosure with Triangular Fin Array

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In this study, an optimum parametric design yielding maximum heat transfer has been suggested using Taguchi Philosophy. This statistical approach has been applied to the results of an experimental parametric study conducted to investigate the influence of fin height (L); fin spacing (S) and Rayleigh number (Ra) on convection heat transfer from triangular fin array within a vertically oriented rectangular enclosure. Taguchi’s L9 (3**3) orthogonal array design has been adopted for three different levels of influencing parameters. The goal of this study is to reach maximum heat transfer (i.e. Nusselt number). The dependence of optimum fin spacing on fin height has been also reported. The results proved the suitability of the application of Taguchi design approach in this kind of study, and the predictions by the method are reported in very good agreement with experimental results. This paper also compares the application of classical design approach with Taguchi’s methodology used for determination of optimum parametric design

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Effective surface area (m2)

Adj SS :

Adjusted sum of squares

ANOVA :

Analysis of variance

a :

Enclosure length (m)

b :

Enclosure width (m)

DF :

Degree of freedom

DOE :

Design of experiments

F :

Variance ratio

F′ :

View factor

FITS :

Fitted values

g :

Acceleration due to gravity (m/s2)

H :

Enclosure height (m)

k :

Thermal conductivity (W/mK)

L :

Fin height (m)

MS :

Mean square

m :

Mass flow rate (kg/s)

Nu :

Nusselt number

n :

Number of response in factor level combination

P :

Probability of significance

Pr:

Prandtl number

Q :

Heat transfer rate (W)

R :

Resistance of the panel heater (Ω)

RESI :

Residual values

Ra :

Rayleigh number

S :

Fin spacing (m)

SNRA :

Signal to noise ratio

SS :

Sum of squares

Seq SS :

Sequential sum of squares

T :

Temperature (K)

V :

Voltage applied (V)

x :

Enclosure wall thickness (m)

Y :

Response for given factor level combination

β :

Coefficient of volume expansion (K−1)

ε :

Emissivity

ν :

Kinematic viscosity (m2/s)

σ :

Stefan Boltzmann constant (W/m2 K4)

a :

Air

c :

Cooled wall

cond :

Conduction

conv :

Convection

f :

Film value

h :

Heated wall

optimum :

Optimum value

rad :

Radiation

wall :

Enclosure side wall

References

  1. C.W. Leung, S.D. Probert, M.J. Shilston, Heat exchanger: optimal separation for vertical rectangular enclosure fins protruding from a vertical rectangular base. Appl. Energy 19, 77–85 (1985)

    Article  Google Scholar 

  2. K.E. Starner, H.N. McManus, An experimental investigation of free convection heat transfer from rectangular fin arrays. J. Heat Transf. 85, 273–278 (1963)

    Article  Google Scholar 

  3. H. Yüncü, G. Anbar, An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer. Heat Mass Transf. 33, 507–514 (1998)

    Article  Google Scholar 

  4. B. Yazicioğlu, H. Yüncü, Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer. Heat Mass Transf. 44, 11–21 (2007)

    Article  Google Scholar 

  5. M. Dogan, M. Sivrioglu, Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel: in natural convection dominated flow regimes. Energy Convers. Manag. 50, 2513–2521 (2009)

    Article  Google Scholar 

  6. A. Karagiozis, G.D. Raithby, K.G.T. Hollands, Natural convection heat transfer from arrays of isothermal triangular fins in air. J. Heat Transf. 116, 105–110 (1994)

    Article  Google Scholar 

  7. C. Sun, Yu. Bo, H.F. Oztop, Y. Wang, J. Wei, Control of mixed convection in lid-driven enclosures using conductive triangular fins. Int. J. Heat Mass Transf. 54, 894–909 (2011)

    Article  MATH  Google Scholar 

  8. C.-H. Hsu, K.-L. Hsiao, J.-T. Teng, Conjugate heat transfer of a triangular fin in the flow of a second-grade fluid. Int. J. Heat Fluid Flow 19, 282–294 (1998)

    Article  Google Scholar 

  9. E. Arquis, M. Rady, Study of natural convection heat transfer in a finned horizontal fluid layer. Int. J. Therm. Sci. 44, 43–52 (2005)

    Article  Google Scholar 

  10. M. Mobedi, H. Yuncu, A three dimensional numerical study on natural convection heat transfer from short horizontal rectangular fin array. Heat Mass Transf. 39, 267–275 (2003)

    Google Scholar 

  11. C.J. Ho, J.Y. Chang, Conjugate natural convection conduction heat transfer in enclosures divided by horizontal fins. Int. J. Heat Fluid Flow 14(2), 177–184 (1993)

    Article  Google Scholar 

  12. E. Bilgen, Natural convection in cavities with a thin fin on the hot wall. Int. J. Heat Mass Transf. 48, 3493–3505 (2005)

    Article  MATH  Google Scholar 

  13. P.J. Ross, Taguchi Techniques for Quality Engineering (McGraw-Hill, New York, 1988)

    Google Scholar 

  14. M.S. Phadke, R.N. Kackar, D.V. Speeney, M.J. Grieco, Off-line quality control in integrated fabrication using experimental design. Bell Syst. Tech. J. 62(5), 1273–1309 (1983)

    Article  Google Scholar 

  15. G. Taguchi, Taguchi Techniques for Quality Engineering (Quality Resources, New York, 1987)

    Google Scholar 

  16. R.N. Kackar, Off-line quality control, parameter design and Taguchi method. J. Qual. Technol. 17, 176–209 (1985)

    Google Scholar 

  17. R.K. Roy, Design of Experiments Using the Taguchi Approach (Wiley, New York, 2001)

    Google Scholar 

  18. M.S. Phadke, Quality Engineering Using Robust Design (Prentice Hall, New Jersey, 1989)

    Google Scholar 

  19. K. Yakut, B. Sahin, C. Celik, N. Alemdaroglu, A. Kurnuc, Effects of tapes with double- sided delta winglets on heat and vortex characteristics. Appl. Energy 80, 77–95 (2005)

    Article  Google Scholar 

  20. J. Li, S. Wang, W. Cai, W. Zhang, Numerical study on air-side performance of an integrated fin and micro-channel heat exchanger. Appl. Therm. Eng. 30, 2738–2745 (2010)

    Article  Google Scholar 

  21. B. Sahin, K. Yakut, I. Kotcioglu, C. Celik, Optimum design parameters of a heat exchanger. Appl. Energy 82, 90–106 (2005)

    Article  Google Scholar 

  22. O. Comakli, C. Celik, S. Erdogan, Determination of optimum working conditions in heat pumps using nonazeotropic refrigerant mixtures. Energy Convers. Manag. 40, 193–203 (1999)

    Article  Google Scholar 

  23. P.A. Sanders, K.A. Thole, Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers. Int. J. Heat Mass Transf. 49, 4058–4069 (2006)

    Article  MATH  Google Scholar 

  24. K. Comakli, F. Simsek, O. Comakli, B. Sahin, Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method. Appl. Energy 86, 2451–2458 (2009)

    Article  Google Scholar 

  25. K. Yakut, N. Alemdaroglu, B. Sahin, C. Celik, Optimum design parameters of a heat exchanger having hexagonal fins. Appl. Energy 83(2), 82–98 (2006)

    Article  Google Scholar 

  26. B. Sahin, K. Yakut, I. Kotcioglu, C. Celik, Optimum design parameters of a heat exchanger. Appl. Energy 82, 90–106 (2005)

    Article  Google Scholar 

  27. S. Gunes, E. Manay, E. Senyigit, V. Ozceyhan, A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts. Appl. Therm. Eng. 31, 2568–2577 (2011)

    Article  Google Scholar 

  28. I. Kotcioglu, A. Cansiz, M.N. Khalaji, Experimental investigation for optimization of design parameters in a rectangular duct with plate fins heat exchange by Taguchi method. Appl. Therm. Eng. 50(1), 604–613 (2013)

    Article  Google Scholar 

  29. K. Senthilkumar, P.S.S. Srinivasan, Application of Taguchi method for the optimization of system parameters of centrifugal evaporative air cooler. J. Therm. Sci. 19(5), 473–479 (2010)

    Article  Google Scholar 

  30. M. Zeng, L.H. Tang, M. Lin, Q.W. Wang, Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl. Therm. Eng. 30, 1775–1783 (2010)

    Article  Google Scholar 

  31. S.M. Lu, Y.C.M. Li, J.C. Tang, Optimum design of natural-circulation solar-water heater by the Taguchi method. Energy 28, 741–750 (2003)

    Article  Google Scholar 

  32. D. Das, A. Dwivedi, Parametric optimization of heat transfer from triangular fin array within a rectangular enclosure using design of experiment (DOE): a comparative analysis. J. Inst. Eng. India Ser. C 94(4), 335–343 (2013)

    Google Scholar 

  33. N. Ellison, Generalized computations of the gray body shape factor for thermal radiation from a rectangular U-channel. IEEE Trans. Compon. Hybrids Manuf. Technol. 2(4), 517–522 (1979)

    Article  Google Scholar 

  34. J.P. Holman, Experimental Methods for Engineers (McGraw-Hill, Singapore, 1989)

    Google Scholar 

  35. R. Unal, E.B. Dean, Taguchi approach to design optimization for quality and cost—an overview, in Proceedings of the 13th Annual Conference of the International Society of Parametric Analysts, New Orleans, 1991

  36. S.H. Park, Robust Design and Analysis for Quality Engineering (Chapman & Hall, London, 1996)

    Google Scholar 

  37. A. Mitra, Fundamentals of Quality Control and Improvement (Wiley, New Jersey, 1998)

    MATH  Google Scholar 

  38. D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A., Das, D. Application of Taguchi Philosophy for Optimization of Design Parameters in a Rectangular Enclosure with Triangular Fin Array. J. Inst. Eng. India Ser. C 96, 351–362 (2015). https://doi.org/10.1007/s40032-015-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-015-0186-9

Keywords

Navigation