Skip to main content
Log in

Automatic Extraction of Machining Features from Prismatic Parts using STEP for Downstream Applications

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Research on computer integrated design and manufacture based on feature extraction (FE) so far has been largely focused on finding all or some possible features, and the task of manufacturing analysis is shifted to process planners. In this paper an attempt has been made to propose a system of FE for 3D components to automate planning activities in a computer integrated manufacturing environment. The FE identifies machining features in a generic manner, while feature reasoning gives the information required for manufacturing, taking 3D model data in standard for exchange of product data format as input to the FE system. To further support the development of generic FE algorithms it is proposed that neutral files be used as a common starting to eliminate problems associated with applying FE techniques to legacy CAD models. Neutral files can remove the effects of modelling practice and specific aspects of CAD software that can change the hierarchical history of the part without altering the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.P. Bhandarkar, R. Nagi, STEP-based feature extraction from STEP geometry for agile manufacturing. Comput. Ind. 41, 3–24 (2000)

    Article  Google Scholar 

  2. J.H. Han, M. Kang, H. Choi, STEP-based feature recognition for manufacturing cost optimization. Comput. Aided Des. 33, 671–686 (2001)

    Article  Google Scholar 

  3. S. Owusu-Ofori, Part design using manufacturing features. J. Intell. Manuf. 5, 55–63 (1994)

    Article  Google Scholar 

  4. Bor-Tyng Sheen, Chun-Fong You, Machining feature recognition and tool-path generation for 3-axis CNC milling. Comput. Aided Des. 38, 553–562 (2006)

    Article  Google Scholar 

  5. B.M. Smith, IGES: a key to CAD/CAM systems integration, National Bureau of Standards. Comput. Gr. Appl. IEEE 3(8), 78–83, ISSN: 0272-1716, doi: 10.1109/MCG.1983.263328

  6. A. Kumar, J. Saha, Automatic data extraction from ISO10303-21 (STEP) for feature recognition. ARISER 4(3), 129–136 (2008)

    MathSciNet  Google Scholar 

  7. STEP Application Handbook ISO 10303, Version 3, 30 June 2006, SCRA, 5300 International Boulevard, North Charleston, SC 29418

  8. ISO 10303 (1994) Standard for the Exchange of Product model data (STEP)

  9. ISO 10303-224 (1999) Industrial automation systems and integration. Product data representation andexchange—Part 224. Application protocol: mechanical product definition for process planning using machining features

  10. R. Sharma, J.X. Gao, A progressive design and manufacturing evaluation system incorporating STEP AP224. Comput. Ind. 47, 155–167 (2002)

    Article  Google Scholar 

  11. L. David, Fundamentals of STEP Implementation STEP Tools Inc, Troy, (1999)

    Google Scholar 

  12. X.G. Ming, K.L. Mak, J.Q. Yan, A PDES/STEP-based information model for computer-aided process planning. Robot Comput. Integr. Des. 14, 347–361 (1998)

    Article  Google Scholar 

  13. S.M. Amaitik, Towards STEP based CAD/CAPP/CAM Systems, 6th International DAAAM Conference INDUSTRIAL ENGINEERING (Tallinn, Estonia, 2008), pp. 24–26

    Google Scholar 

  14. H. Kahn, N. Filer, A. Williams, N. Whitaker, A generic framework for transforming EXPRESS information models. Comput. Aided Des. 33, 501–510 (2001)

    Article  Google Scholar 

  15. J. Gao, D.T. Zheng, N. Gindy, Extraction of machining features for CAD/CAM integration. Int. J. Adv. Manuf. Technol. 24, 573–581 (2004)

    Article  Google Scholar 

  16. V.Cicirello, W. C.Regli, Machining feature-based comparisons of mechanical parts, SMI-2001: International Conference on Shape Modeling and Applications, Geneva, Italy (2001)

  17. W.C. Regli, S.K. Gupta, D.S. Nau, Extracting alternative machining features: an algorithmic approach. Res. Eng. Des. 7(3), 173–192 (1995)

    Article  Google Scholar 

  18. M.J. Pratt, B.D. Anderson, T. Ranger, Towards the standardized exchange of parameterized feature-based CAD models. Comput. Aided Des. 37, 1251–1265 (2005)

    Article  Google Scholar 

  19. K. Case, M. Hounsell, Feature modeling: a validation methodology and its evaluation. J Mater. Process. Technol. 107, 15–23 (2000)

    Article  Google Scholar 

  20. J. Cherng, X. Shao, Y. Chen, P. Sferro, Feature-based part modeling and process planning for rapid response manufacturing. Comput. Ind. Eng. 34(2), 515–530 (1998)

    Article  Google Scholar 

  21. M. Kang, J. Han, J.G. Moon, An approach for interlinking design and process planning. J. Mater. Process. Technol. 139, 589–595 (2003)

    Article  Google Scholar 

  22. B. Khoshnevis, D. Sormaz, J.Y. Park, An integrated process planning system using feature reasoning and space search-based optimization. IIE Trans. 31, 597–616 (1999)

    Google Scholar 

  23. M. Mantyla, D. Nau, J. Shah, Challenges in feature-based manufacturing research. Commun. ACM 39(2), 77–85 (1996)

    Article  Google Scholar 

  24. H. Miao, N. Sridharan, J.J. Shah, CAD–CAM integration using machining features. Int. J. Comput. Integr. Manuf. 15(4), 296–318 (2002)

    Article  Google Scholar 

  25. J.J. Shah, P. Sreevalsan, A. Mathew, Survey of CAD/feature-based process planning and NC Programming techniques. Comput.-Aided Eng. J. 8, 25–33 (1991)

    Article  Google Scholar 

  26. S. Joshi, T.C. Chang, Graph based heuristics for recognition of machined features from a 3-D solid model. Comput. Aided Des. 20, 58–66 (1988)

    Article  MATH  Google Scholar 

  27. S. Gao, J.J. Shah, Automatic recognition of interacting machining features based on minimal condition subgraph. Comput. Aided Des. 30(9), 727–739 (1998)

    Article  MATH  Google Scholar 

  28. P.D. Stefano, F. Bianconi, L.D. Angelo, An approach for feature semantics recognition in geometric models. Comput. Aided Des. 36, 993–1009 (2004)

    Article  Google Scholar 

  29. J.H. Vandenbrande, A.A.G. Requicha, Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1–17 (1993)

    Article  Google Scholar 

  30. W.C. Regli, S.K. Gupta, D.S. Nau, Toward multiprocessor feature recognition. Comput. Aided Des. 29(1), 37–51 (1997)

    Article  Google Scholar 

  31. J. Han, M. Pratt, W.C. Regli, Manufacturing feature recognition from solid models: a status report. IEEE Trans. Robot. Autom. 16(6), 782–796 (2000)

    Article  Google Scholar 

  32. T. Woo, Feature extraction by volume decomposition. In: Proceedings of the conference on. CAD/CAM technology in mechanical engineering (1982), pp. 76–94

  33. Y. Kim, Recognition of form features using convex decomposition. Comput. Aided Des. 24(9), 461–476 (1992)

    Article  MATH  Google Scholar 

  34. J. Dong, S. Bijayan, Manufacturing feature determination and extraction—Part 1: optimal volume segment. Comput. Aided Des. 29, 475–484 (1997)

    Article  Google Scholar 

  35. T. Lim, H. Medellin et al., Edge-based identification of DP-features on free-form solids. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 851–859 (2005)

    Article  Google Scholar 

  36. V. Sundararajan, P.K. Wright, Volumetric feature recognition for machining components with freeform surfaces. Comput. Aided Des. 36, 11–25 (2004)

    Article  Google Scholar 

  37. B. Li, J. Liu, Detail feature recognition and decomposition in solid model. Comput. Aided Des. 34, 405–414 (2002)

    Article  Google Scholar 

  38. N. Joshi, D. Dutta, Feature simplification techniques for freeform surface models. J. Comput. Inf. Sci. Eng. 3(9), 177–186 (2003)

    Article  Google Scholar 

  39. J. Gao, D.T. Zheng, N. Gindy, D. Clark, Extraction/conversion of geometric dimensions and tolerances for machining features. Int. J. Adv. Manuf. Technol. 26, 405–414 (2005)

    Article  Google Scholar 

  40. B.S. Prabhu, S. Biswas, S.S. Pande, Intelligent system for extraction of product data from CADD models. Comput. Ind. 44, 79–95 (2001)

    Article  Google Scholar 

  41. J.J. Shah, Y. Yan, B.C. Zhang, Dimension and tolerance modeling and transformation in feature based design and manufacturing. J. Intell. Manuf. 9, 475–488 (1998)

    Article  Google Scholar 

  42. S.C. Park, Knowledge capturing methodology in process planning. Comput. Aided Des. 35, 1109–1117 (2003)

    Article  Google Scholar 

  43. K.V. Ramana, P.V.M. Rao, Data and knowledge modeling for design-process planning integration of sheet metal components. J. Intell. Manuf. 15, 607–623 (2004)

    Article  Google Scholar 

  44. W.D. Li, S.K. Ong, A.Y.C. Nee, Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts. Int. J. Prod. Res. 40(8), 1899–1922 (2002)

    Article  MATH  Google Scholar 

  45. T.N. Wong, L.C.F. Chan, H.C.W. Lau, Machining process sequencing with fuzzy expert system and genetic Algorithms. Eng. Comput. 19, 191–202 (2003)

    Article  Google Scholar 

  46. S.C. Feng, A machining process planning activity model for systems integration. J. Intell. Manuf. 14, 527–539 (2003)

    Article  Google Scholar 

  47. S.C. Feng, E.Y. Song, A manufacturing process information model for design and process planning integration. J. Manuf. Syst. 22(1), 1–15 (2003)

    Article  MathSciNet  Google Scholar 

  48. H. Shin, G.J. Olling, Y.C. Chung et al., An integrated CAPP/CAM system for stamping die pattern machining. Comput. Aided Des. 35, 203–213 (2003)

    Article  Google Scholar 

  49. F. Wang, J.J. Mills, V. Devarajan, A conceptual approach managing design resource. Comput. Ind. 47, 169–183 (2002)

    Article  Google Scholar 

  50. Y. Zhang, C.C. Zhang, H.P.B. Wang, An Internet based STEP data exchange framework for virtual enterprises. Comput. Ind. 41, 51–63 (2000)

    Article  Google Scholar 

  51. X.W. Xu, Q. He, Striving for a total integration of CAD, CAPP, CAM and CNC. Robot. Comput. Integr. Manuf. 20, 101–109 (2004)

    Article  Google Scholar 

  52. ISO 10303-47 Integrated Generic Resources: Shape Tolerance Resource Model, Part 47, ISO (1994)

  53. J. Han, A. Requicha, Integration of feature based design and feature recognition. Comput. Aided Des. 29(5), 393–403 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Borkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkar, B.R., Puri, Y.M. Automatic Extraction of Machining Features from Prismatic Parts using STEP for Downstream Applications. J. Inst. Eng. India Ser. C 96, 231–243 (2015). https://doi.org/10.1007/s40032-015-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-015-0171-3

Keywords

Navigation