Skip to main content
Log in

Design an Optimal ANFIS Controller using Bee Colony Optimization for Trajectory Tracking of a Quadrotor UAV

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

This paper presents a new neuro-fuzzy bee colony optimization method to find the optimal distribution of the membership functions (MFs) in the design of neuro-fuzzy controllers for complex nonlinear systems. The paper proposes an intelligent controller based on adaptive network-based fuzzy inference system (ANFIS) and bee colony optimization (BCO) algorithm to govern the behavior of a three-degree-of-freedom quadrotor unmanned aerial vehicle. The quadrotor was chosen due to its simple mechanical structure; nevertheless, these types of aircraft are highly nonlinear. Intelligent control such as fuzzy logic is a suitable choice for controlling nonlinear systems. The ANFIS controller is used to reproduce the desired trajectory of the quadrotor in 2D vertical plane, and the BCO algorithm aims to dynamically find the optimal distribution of the MFs at the input and output ends of the ANFIS in order to reduce learning errors and improve the quality of the controller. To evaluate the performance of the proposed  BCO-tuned ANFIS controller, a comparison between the proposed ANFIS-BCO controller and other controller’s performance such as ANFIS and proportional-integral-derivative controllers is illustrated using the same system. The comparison of results shows that the proposed ANFIS-BCO method outperforms the other methods already developed in the same study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 24
Fig. 23
Fig.25
Fig.26

Similar content being viewed by others

References

  1. S.A. Mostafa, M.S. Ahmad, A. Mustapha, Adjustable autonomy: a systematic literature review. Artif. Intell. Rev. 51, 149–186 (2017)

    Article  Google Scholar 

  2. C. Paucar, L. Morales, K. Pinto, M. Sánchez, R. Rodríguez, M. Gutierrez, L. Palacios, Use of drones for surveillance and reconnaissance of military areas. In: International Conference of Research Applied to Defense and Security. Springer, 119–132 (2018)

  3. A. Bujak, M. Smolarek, A. Gebczynska, Applying military telematic solutions for logistics purposes. in 11th Int. Conf. Transport Systems Telematics 248–256 (2011).

  4. L.A. Haidari, S.T. Brown, M. Ferguson, E. Bancroft, M. Spiker, A. Wilcox, R. Ambikapathi, V. Sampath, D.L. Connor, B.Y. Lee, The economic and 432 operational value of using drones to transport vaccines. Vaccine 34, 4062–4067 (2016). https://doi.org/10.1016/j.vaccine.2016.06.022

    Article  Google Scholar 

  5. E.N. Barmpounakis, E.I. Vlahogianni, J.C. Golias, Unmanned aerial systems for transportation engineering: current practice and future challenges. Int. J. Transp. Sci. Technol. 5, 111–122 (2016)

    Article  Google Scholar 

  6. P. Reinartz, M. Lachaise, E. Schmeer, T. Krauss, H. Runge, Traffic monitoring with serial images from airborne cameras. ISPRS J. Photogramm. Remote Sens. 61, 149–158 (2006). https://doi.org/10.1016/j.isprsjprs.2006.09.009

    Article  Google Scholar 

  7. European Aviation Safety Agency, ‘‘Prototype” Commission Regulation on Unmanned Aircraft Operations (2016).

  8. S. Siebert, J. Teizer, Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014). https://doi.org/10.1016/j.autcon.2014.01.004

    Article  Google Scholar 

  9. J. Valente, J.D. Cerro, A. Barrientos, D. Sanz, Aerial coverage optimization in precision agriculture management: a musical harmony inspired approach. Comput. Electron. Agric. 99, 153–159 (2013)

    Article  Google Scholar 

  10. P.K. Freeman, R.S. Freeland, Politics & technology: U.S. polices restricting unmanned aerial systems in agriculture. Food Policy 49, 302–311 (2014). https://doi.org/10.1016/j.foodpol.2014.09.008

    Article  Google Scholar 

  11. D. Lenhart, S. Hinz, J. Leitloff, U. Stilla, Automatic traffic monitoring based on aerial image sequences. Pattern Recognit. Image Anal. 18, 400–405 (2008). https://doi.org/10.1134/S1054661808030061

    Article  Google Scholar 

  12. A. Puri, K. Valavanis, M. Kontitsis, Statistical profile generation for traffic monitoring using real-time UAV based video data. Mediterr. Conf. Control Autom. 1–6(2007). https://doi.org/10.1109/MED.2007.4433658

    Article  Google Scholar 

  13. K. Kanistras, G. Martins, M.J. Rutherford, K.P. Valavanis, Survey of Unmanned Aerial Vehicles (UAVs) for traffic monitoring. In: Handbook of Unmanned Aerial Vehicles. Springer, pp. 2643–2666 (2014). https://doi.org/10.1109/ICUAS.2013.6564694

  14. J.Y.J. Chow, Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. Int. J. Transp. Sci. Technol. 5(3), 167–185 (2016)

    Article  Google Scholar 

  15. S. Srinivasan, H. Latchman, J. Shea, Airborne traffic surveillance systems: video surveillance of highway traffic. Proc. ACM 2nd Int. Work. Video Surveill. Sens. Networks, 131–135.

  16. A. Wada, T. Yamashita, M. Maruyama, T. Arai, H. Adachi, H. Tsuji, A surveillance system using small unmanned aerial vehicle (UAV) related technologies. NEC Tech. J. 8(1), 68–72 (2015)

    Google Scholar 

  17. R.L. Finn, D. Wright, Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Comput. Law Secur. Rev. 28, 184–194 (2012). https://doi.org/10.1016/j.clsr.2012.01.005

    Article  Google Scholar 

  18. L. Ma, M.C. Li, Y.F. Wang, L.H. Tong, L. Cheng, Using high-resolution imagery acquired with an autonomous unmanned aerial vehicle for urban construction and planning. Proc. 2013 Int. Conf. Remote Sensing, Environ. Transp. Eng. (Rsete 2013) 31, 200–203 (2013).

  19. R.J. Dobson, C. Brooks, C. Roussi, T. Colling, Developing an unpaved road assessment system for practical deployment with high-resolution opticaldata collection using a helicopter UAV. in International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 235–243 (2013). https://doi.org/10.1109/ICUAS.2013.6564695

  20. V.A. Knyaz, A.G. Chibunichev, Photogrammetric techniques for road surface analysis. in ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic, 515–520 (2016). https://doi.org/10.5194/isprsarchives-XLI-B5-515-2016

  21. N.V. Hoffer, C. Coopmans, A.M. Jensen, Y. Chen, A survey and categorization of small low-cost unmanned aerial vehicle system identification. J. Intell. Robot. Syst. 74, 129–145 (2014)

    Article  Google Scholar 

  22. C. Kanellakis, G. Nikolakopoulos, Survey on computer vision for UAVs: current developments and trends. J. Intell. Robot. Syst. 87, 141–168 (2017)

    Article  Google Scholar 

  23. A.C. Watts, V.G. Ambrosia, E.A. Hinkley, Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 4, 1671–1692 (2012)

    Article  Google Scholar 

  24. C. Di Franco, G. Buttazzo, Coverage path planning for UAVs photogrammetry with energy and resolution constraints. J. Intell. Robot. Syst. 83, 445–462 (2016)

    Article  Google Scholar 

  25. O. Artemenko, O.J. Dominic, O. Andryeyev, A. Mitschele-Thiel, Energy-aware trajectory planning for the localization of mobile devices using an unmanned aerial vehicle. in Proceedings of the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA,1–4 August 2016; pp. 1–9 (2016).

  26. T.M. Cabreira, C. Di Franco, P.R. Ferreira Jr., G.C. Buttazzo, Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robot. Autom. Lett. 3, 3662–3668 (2018)

    Article  Google Scholar 

  27. P. Vincent, I. Rubin, A framework and analysis for cooperative search using UAV swarms. in Proceedings of the A Framework and Analysis for Cooperative Search Using UAV Swarms, Nicosia, Cyprus, 14–17 March2004; pp. 79–86 (2004)

  28. A. Xu, C. Viriyasuthee, I. Rekleitis, Optimal complete terrain coverage using an unmanned aerial vehicle. in Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2513–2519 (2011).

  29. A. Xu, C. Viriyasuthee, I. Rekleitis, Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robots 36, 365–381 (2014)

    Article  Google Scholar 

  30. C. Caraveo, F. Valdez, O. Castillo, Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. 43, 131–142 (2012)

    Article  Google Scholar 

  31. O. Castillo, L. Amador-Angulo, A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inform. Sci. 460, 476–496 (2018)

    Article  Google Scholar 

  32. L.C. Gonçalves, M.F. Santos, R.J.F. de Sa, J.L. da Silva, H.B. Rezende, et al., Development of a PI controller through an ant colony optimization algorithm applied to a SMAR® didactic level plant. in 19th International Carpathian Control Conference (ICCC), IEEE (2018).

  33. A.S. Oshaba, E.S. Ali, S.M. Abd Elazim, Speed control of SRM supplied by photovoltaic system via ant colony optimization algorithm. Neural Comput. Appl. 28, 365 (2017). https://doi.org/10.1007/s00521-015-2068-8

    Article  Google Scholar 

  34. M. Rahman, Z.C. Ong, W.T. Chong et al., Wind turbine tower modeling and vibration control under different types of loads using ant colony optimized PID controller. Arab. J. Sci. Eng. 44, 707 (2019). https://doi.org/10.1007/s13369-018-3190-6

    Article  Google Scholar 

  35. Y. Mokhtari, D. Rekioua, High performance of maximum power point tracking using ant colony algorithm in wind turbine. Renew. Energy 126, 1055–1063 (2018)

    Article  Google Scholar 

  36. M.E. Karar, M.A. El-Brawany, Fully tuned RBF neural network controller for ultrasound hyperthermia cancer tumour therapy. Netw. Comput. Neural Syst. (2018). https://doi.org/10.1080/0954898X.2018.1539260

    Article  Google Scholar 

  37. R. Singh, L.B. Prasad, Optimal trajectory tracking of robotic manipulator using ant colony optimization. in 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2018, pp. 1–6 (2018). https://doi.org/10.1109/UPCON.2018.8597087

  38. T.K. Priyambodo, A.E. Putra, A. Dharmawan, Optimizing control based on ant colony logic for Quadrotor stabilization. in IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Bali, 2015, 1–4 (2015). https://doi.org/10.1109/ICARES.2015.7429820

  39. A. Jacknoon, M.A. Abido, Ant Colony based LQR and PID tuned parameters for controlling Inverted Pendulum. in International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), Khartoum, 2017, pp. 1–8 (2017). https://doi.org/10.1109/ICCCCEE.2017.7867652

  40. M.P. Aghababa, Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft Comput 20, 4055 (2016). https://doi.org/10.1007/s00500-015-1741-2

    Article  Google Scholar 

  41. A. Thamallah, A. Sakly, F. M’Sahli, A new constrained PSO for fuzzy predictive control of Quadruple Tank process. Meas. J. Int. Meas. Confed 136, 93–104 (2019)

    Article  Google Scholar 

  42. J. Nanda, S. Mishra, L.C. Saikia, Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control. IEEE Trans. Power Syst. 24, 602–609 (2009)

    Article  Google Scholar 

  43. E.S. Ali, S.M. Abd-Elazim, Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int. J. Elec. Power Energy Syst. 33, 633–638 (2011)

    Article  Google Scholar 

  44. L. Liu, L. Shan, J. Yan, C. Liu, Y. Dai, An improved BFO algorithm for optimising the PID parameters of servo system. Chin. Control Decis. Conf. (CCDC) Shenyang 2018, 3831–3836 (2018). https://doi.org/10.1109/CCDC.2018.8407788

    Article  Google Scholar 

  45. H. Metered, W. Abbas, A. Emam, Optimized proportional integral derivative controller of vehicle active suspension system using genetic algorithm. SAE Technical Paper, pp. 01–1399 (2018).

  46. Z. Li, M. Pourmehrab, L. Elefteriadou, S. Ranka, Intersection control optimization for autonomous vehicles using genetic algorithm. J. Transp. Eng. Part A Syst. 144, 04018074 (2018)

    Article  Google Scholar 

  47. Z. Civelek, Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm. Eng. Sci. Technol. Int. J. (2019). https://doi.org/10.1016/j.jestch.2019.04.010

    Article  Google Scholar 

  48. J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  49. N. Walia, H. Singh, A. Sharma, ANFIS: Adaptive neuro-fuzzy inference system-a survey. Int J Comput Appl 123, 32–38 (2015)

    Google Scholar 

  50. D. Karaboga, E. Kaya, Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev. (2018). https://doi.org/10.1007/s10462-017-9610-2

    Article  Google Scholar 

  51. D. Karaboga, An Idea based on Honey Bee Swarm for Numerical Optimization (Technical Report-Tr06, October, 2005), Erciyes University, Engineering Faculty Computer Engineering Department, Kayseri/Türkiye (2005).

Download references

Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boumediene Selma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selma, B., Chouraqui, S., Selma, B. et al. Design an Optimal ANFIS Controller using Bee Colony Optimization for Trajectory Tracking of a Quadrotor UAV. J. Inst. Eng. India Ser. B 103, 1505–1519 (2022). https://doi.org/10.1007/s40031-022-00747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00747-1

Keywords

Navigation