Skip to main content
Log in

Detection and Localization of the Stator Winding Inter-Turn Fault in Induction Motors based on Parameters Estimation using Genetic Algorithm

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

A three-phase squirrel cage induction motor is considered the most broadly used electrical to mechanical conversion machine in industrial and commercial applications. During operation, this machine can be subjected to a fault that may progress to failure, causing the total system shutdown. Since continuity of operation is the main target for an efficient system, faults monitoring from the incipient stage becomes the fault detection field’s primary goal. This paper presents a technique for detecting and localizing the incipient stage of inter-turn fault in three-phase squirrel cage induction motors. The suggested technique utilizes a genetic algorithm for estimating the values of the motor’s basic parameters (stator and rotor resistances, self-inductances, and mutual inductance) and the number of stator winding turns in three phases under the inter-turn fault. The simulation results illustrate each parameter’s behavior concerning the inter-turn fault severity and demonstrate the importance of considering the load level effects in the estimation process. Moreover, this paper confirms that tracking the variations of the number of turn’s parameters effectively identifies and localizes the inter-turn fault from its incipient stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig.6
Fig. 7

Similar content being viewed by others

References

  1. D. Metin, I. Erdem, C. Haris, Pareto-based multi-objective optimization for fractional order pi speed control of induction motor by using elman neural network. Arab. J. Sci. Eng. 44(3), 1–11 (2018). https://doi.org/10.1007/s13369-018-3364-2

  2. J.G. Jacqueline, F.C. Marcelo, G. Alessandro, M.A. Cristiano, S.S. Danilo, Parameters estimation of three-phase induction motors using differential evolution. Electr. Power Syst. Res. 154, 204–212 (2018). https://doi.org/10.1016/j.epsr.2017.08.033

    Article  Google Scholar 

  3. R. Henrique, C. Palácios, A. Goedtel, W.F. Godoy, J.A. Fabri, Fault identification in the stator winding of induction motors using PCA with artificial neural networks. J. Control. Autom. Electr. Syst. 27(4), 406–418 (2016). https://doi.org/10.1007/s40313-016-0248-0

    Article  Google Scholar 

  4. R. Tabasian, M. Ghanbari, M. Jannati, A novel direct field‐oriented control strategy for fault‐tolerant control of induction machine drives based on EKF. Inst. Eng. Technol. 15, 979–997 (2021). https://doi.org/10.1049/elp2.12051

  5. P. Chattopadhyay, P. Konar, Feature extraction using wavelet transform for multi-class fault detection of induction motor. J. Inst. Eng. India Ser. B 95(1), 73–81 (2014). https://doi.org/10.1007/s40031-014-0076-1

    Article  Google Scholar 

  6. D.K. Chaturvedi, M.P. Singh, Online equivalent circuit parameter estimation of three-phase induction motor using ANN. J. Inst. Eng. Ser. B (2019). https://doi.org/10.1007/s40031-019-00387-y

    Article  Google Scholar 

  7. A.S.A. Saad, G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques. Elect. Power Syst. Res. 65, 197–221 (2003). https://doi.org/10.1016/S0378-7796(02)00227-4

    Article  Google Scholar 

  8. K. Saad, K. Abdellah, M.R. Mohamed, H. Ahmed, Sensorless control technique of open-end winding five phase induction motor under partial stator winding short-circuit. Periodica Polytech. Electr. Eng. Comput. Sci. 64, 2–19 (2020)

    Google Scholar 

  9. N. Subhasis, A.T. Hamid, L. Xiaodong, Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. Energy Convers. 20, 719–729 (2005). https://doi.org/10.1109/TEC.2005.847955

    Article  Google Scholar 

  10. X. Zhao, H. Changhua, Y. Feng, K. Shyh-Hao, G. Chi-Keong, G. Amit, N. Sivakumar, Data-driven inter-turn short circuit fault detection in induction machines. IEEE Access. 5, 25055–25068 (2017). https://doi.org/10.1109/ACCESS.2017.2764474

    Article  Google Scholar 

  11. R. Aswad, B. Jassim, Open-circuit fault diagnosis in three-phase induction motor using model-based technique. Arch. Electr. Eng. 69(4), 815–827 (2020). https://doi.org/10.24425/aee.2020.134632

    Article  Google Scholar 

  12. A. Thakur, P. Kundu, A. Das. Prediction of unknown fault of induction motor using SVM following decision-directed acyclic graph. J. Inst. Eng. Ser. B (2021). https://doi.org/10.1007/s40031-021-00536-2

    Article  Google Scholar 

  13. M. Arkan, D.K. Perovic, P. Unsworth, Online stator fault diagnosis in induction motors. IEE Proc. Electr. Power Appl. 148, 537–547 ( 2001)

    Article  Google Scholar 

  14. W. Qing, N. Subhasis, Fast single-turn sensitive stator interturn fault detection of induction machines based on positive- and negative-sequence third harmonic components of line currents. IEEE Trans. Ind. Appl. 46, 974–983 (2010)

    Article  Google Scholar 

  15. A. Siddique, G.X.Y.B. Sin, S. Member, Applications of artificial intelligence techniques for induction machine stator fault diagnostics. Review SDEMPED, pp. 24–26 (2003)

  16. N.R. Devi, D.V.S.S. Siva Sarma, P.V. Ramana Rao, Diagnosis and classification of stator winding insulation faults on a three-phase induction motor using wavelet and MNN. IEEE Trans. Dielectr. Electr. Insul. 23(5), 2543–2555 (2016). https://doi.org/10.1109/TDEI.2016.005576

    Article  Google Scholar 

  17. M. Luqman, A. Zakariya, A. Mohammad, An efficient stator inter-turn fault diagnosis tool for induction motors. Energies 11(653), 1–18 (2018). https://doi.org/10.3390/en11030653

    Article  Google Scholar 

  18. M. Skowron, T. Orlowska-kowalska, M. Wolkiewicz, C.T. Kowalski, Convolutional neural network-based stator current data-driven incipient stator fault diagnosis of inverter-fed induction motor. Energies 13(1475), 1–21 (2020). https://doi.org/10.3390/en13061475

    Article  Google Scholar 

  19. G. Amal, B. Hanen, P. Remus, S. Anis, R. Raphael, F.M.Mohamed, Detecting inter-turn short-circuit fault in induction machine using high-order sliding mode observer: simulation and experimental verification. J. Control Autom. Electr. Syst. 28(4), 1–9 (2017). https://doi.org/10.1007/s40313-017-0314-2

  20. A.R. Marco, H. Manuel, G. Victor, M. Gilberto, Fault diagnostic based on parity equations applied to induction motor. XXI Congreso de la Asociación Chilena de Control Automático ACCA, pp. 65–71 (2014).

  21. D. Fang, Z. Rastko, Induction motor stator fault detection by a condition monitoring scheme based on parameter estimation algorithms. Electr. Power Compon. Syst. 44(10), 1–27 (2014).

  22. H. Abdallah, K. Benatman, On-line stator winding inter-turn short-circuits detection in induction motors using recursive levenberg-marquardt algorithm. Int. J. Electr. Eng. Inf. 9, 42–57 (2017). https://doi.org/10.15676/ijeei.2017.9.1.3

    Article  Google Scholar 

  23. B. Smail, T. Slim, T. Jean-Claude, C. Gérard, Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Ind. Electron. 53, 963–973 (2006). https://doi.org/10.1109/TIE.2006.874258

    Article  Google Scholar 

  24. M. Arkan, D. Kostic-perovic, P.J. Unsworth, Modelling and simulation of induction motors with inter-turn faults for diagnostics. Electr. Power Syst. Res. 75, 57–66 (2005). https://doi.org/10.1016/j.epsr.2004.08.015

    Article  Google Scholar 

  25. J. Seesak, L. Panthep, Parameter estimation of three-phase induction motor by using genetic algorithm. J. Electr. Eng. Technol. 4, 360–364 (2009)

    Article  Google Scholar 

  26. F. Duan, R. Živanovi, Condition monitoring of an induction motor stator windings via global optimization based on the hyperbolic cross points. IEEE Trans. Ind. Electron. 62(3), 1826–1834 (2015)

    Article  Google Scholar 

  27. T.K Konstantinos, Electrical Machines Parameter Identification Using Genetic Algorithms, PhD Thesis, University of Nottingham (2010)

  28. A. Chaibakhsh, A. Ghaffari, S.A.A. Moosavian, A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms. Simul. Model. Pract. Theory 15, 1029–1051 (2007). https://doi.org/10.1016/j.simpat.2007.06.004

    Article  Google Scholar 

  29. H.R. Mohammadi, A. Akhavan, Parameter estimation of three-phase induction motor using hybrid of genetic algorithm and particle swarm optimization. J. Eng. 10, 1–6 (2014). https://doi.org/10.1155/2014/148204

    Article  Google Scholar 

Download references

Funding

No financial interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raya A. K. Aswad.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswad, R.A.K., Jassim, B.M.H. Detection and Localization of the Stator Winding Inter-Turn Fault in Induction Motors based on Parameters Estimation using Genetic Algorithm. J. Inst. Eng. India Ser. B 103, 405–414 (2022). https://doi.org/10.1007/s40031-021-00670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00670-x

Keyword

Navigation