Skip to main content
Log in

Betweenness as a Tool of Vulnerability Analysis of Power System

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Complex network theory finds its application in analysis of power grid as both share some common characteristics. By using this theory finding critical elements in power network can be achieved. As vulnerabilities of elements of the network decide the vulnerability of the total network, in this paper, vulnerability of each element is studied using two complex network models—betweenness centrality and extended betweenness. The betweenness centrality considers only topological structure of power system whereas extended betweenness is based on both topological and physical properties of the system. In the latter case, some of the electrical properties such as electrical distance, line flow limits, transmission capacities of lines and PTDF matrix are included. The standard IEEE 57 bus system has been studied based upon the above mentioned indices and following conclusions have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Xue, S. Xiao, Generalized congestion of power systems: insights from the massive blackouts in India. J. Mod. Power Syst. Clean Energy 1(2), 91–100 (2013)

    Article  Google Scholar 

  2. P. Crucitti, V. Latora, M. Marchiori, Phys. A 338, 92 (2004)

    Article  MathSciNet  Google Scholar 

  3. R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur. Phys. J. B 46, 101 (2005)

    Article  Google Scholar 

  4. I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman, Chaos 17, 026103 (2007)

    Article  Google Scholar 

  5. W.J. Bai, T. Zhou, Z.Q. Fu, Y.H. Chen, X. Wu, B.H. Wang, IEEE CNF 4, 2687 (2006)

    Google Scholar 

  6. D.P. Chassin, C. Posse, Phys. A 355, 667 (2005)

    Article  Google Scholar 

  7. X. Chen, K. Sun, Y. Cao, S. Wang, IEEE Power Engineering Society General Meeting (2007)

  8. P. Crucitti, V. Latora, M. Marchiori, Fluct. Noise Lett. 5, L201 (2005)

    Article  Google Scholar 

  9. B. Gou, H. Zheng, W. Wu, X. Yu, in IEEE International Symposium on Circuits and Systems, ISCAS, vol. 69 (2007)

  10. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  Google Scholar 

  11. R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378 (2000)

    Article  Google Scholar 

  12. P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004)

    Article  Google Scholar 

  13. A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002)

    Article  Google Scholar 

  14. S. Eubank, H. Guclu, V.S.A. Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004)

    Article  Google Scholar 

  15. C.W. Jiang, E. Bompard, Math. Comput. Simul. 68, 57 (2005)

    Article  MathSciNet  Google Scholar 

  16. G. Gross, E. Bompard, Int. J. Electr. Power Energy Syst. 26, 787 (2004)

    Article  Google Scholar 

  17. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  18. A.L. Barabasi, R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. X.F. Wang, G.R. Chen, Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3(1), 6–20 (2003)

    Article  Google Scholar 

  20. J. Zhao, H. Yu, J.H. Luo et al., Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 13, 1529–1537 (2006)

    Article  MathSciNet  Google Scholar 

  21. K. Sun, Complex networks theory: a new method of research in power grid, in Proceedings of the IEEElPES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China (2005), pp. 1–6

  22. H. Zhao, C. Zhang, H. Ren, Power transmission network vulnerable region identifying based on complex network theory, in Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Nanjing, China (2008), pp. 1082–1085

  23. L. Zongxiang, M. Zhongwei, Z. Shuangxi, Cascading failure analysis of bulk power system using small-world network model, in Proceedings of the 8th International Conference on Probabilistic Methods Applied to Power Systems. (Iowa State University, Ames, 2004), pp. 635–640

  24. Z. Guohua, W. Ce, Z. Jianhua, Y. Jingyan, Z. Yin, D. Manyin, Vulnerability assessment of bulk power grid based on complex network theory, in Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Nanjing, China (2008), pp. 1554–1558

  25. A.J. Holmgren, Quantitative Vulnerability Analysis of Electric Power Networks. Ph.D. dissertation, Royal Institute of Technology, 2006

  26. R. Albert, I. Albert, G.L. Nakarado, Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004)

    Article  Google Scholar 

  27. R. Criado, J. Flores, B. Hernandez-Bermejo, J. Pello, M. Romance, Effective measurement of network vulnerability under random and intentional attacks. J. Math. Model. Algorithms 4(3), 307–316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.E. Cotilla-Sanchez, A Complex Network Approach to Analyzing the Structure and Dynamics of Power Grids. Ph.D. dissertation, The University of Vermont, 2009

  29. G.K. Rout, T. Chowdhury, C.K. Chanda, Analysis of power grid vulnerability based on complex network theory, in Thirtieth National Convention of Electrical Engineering on Development of Smart Grid in India, Shillong, Electrical Engineering Division, November 07–08, 2014

  30. E. Bompard, D. Wu, F. Xue, Structural vulnerability of power systems: a topological approach. Electr. Power Syst. Res. 81(7), 1334–1340 (2011)

    Article  Google Scholar 

  31. B. Sujatha, N. Kamaraj, Transmission congestion management using particle swarm optimization. JES 7–1, 54–70 (2011)

    Google Scholar 

  32. U. Brandes, J. Math. Soc. 25, 163 (2001)

    Article  Google Scholar 

  33. S. Arianos, E. Bompard, A. Carbone, F. Xue, Power grid vulnerability: a complex network approach. Chaos 19, 013119 (2009)

    Article  Google Scholar 

  34. http://www.ee.washington.edu/research/pstca/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyanendra Kumar Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, G.K., Chowdhury, T. & Chanda, C.K. Betweenness as a Tool of Vulnerability Analysis of Power System. J. Inst. Eng. India Ser. B 97, 463–468 (2016). https://doi.org/10.1007/s40031-016-0222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-016-0222-z

Keywords

Navigation