Skip to main content
Log in

Comparative Analysis on the Performance of a Short String of Series-Connected and Parallel-Connected Photovoltaic Array Under Partial Shading

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

The output power from the photovoltaic (PV) array decreases and the array exhibit multiple peaks when it is subjected to partial shading (PS). The power loss in the PV array varies with the array configuration, physical location and the shading pattern. This paper compares the relative performance of a PV array consisting of a short string of three PV modules for two different configurations. The mismatch loss, shading loss, fill factor and the power loss due to the failure in tracking of the global maximum power point, of a series string with bypass diodes and short parallel string are analysed using MATLAB/Simulink model. The performance of the system is investigated for three different conditions of solar insolation for the same shading pattern. Results indicate that there is considerable power loss due to shading in a series string during PS than in a parallel string with same number of modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Ideality factor of the diode: 1.3

A bypass :

Ideality factor of the bypass diode

G :

Irradiance reaching the surface of the module

I ph :

PV cell photocurrent, proportional to temperature and irradiance of the PV cell

I d0 :

Average current through the diode

I o :

Reverse saturation current of the diode

I :

Output current of the PV cell

I PV :

Output current of the PV array

\( I_{{o_{bypass}}} \) :

Reverse saturation current of the bypass diode

I module :

Output current of the PV module with bypass diode

K :

Boltzmann constant: 1.38 × 10−23 J/K

K i :

Temperature coefficient of SC current

K V :

Temperature coefficient on open circuit voltage

K t :

Temperature-rise coefficient

P MPP1 :

Power of the local MPP at low voltages

P MPP2 :

Power of the local MPP at high voltages

\( P_{{MPP}_{global}} \) :

Power at global MPP

P max :

Maximum possible power under partial shading

q :

Charge of an electron: 1.6 × 10−19C

R S :

Intrinsic series resistance of the solar cell

R sh :

Equivalent shunt resistance of the solar array

ST :

Standard test conditions: irradiance 1,000 W/m2, cell junction temperature 25 °C, and reference air mass 1.5 solar spectral irradiance distributions

T :

Surface temperature of the PV module

T amb :

Ambient temperature of PV cell, 20 °C

ΔT :

(TT ST ), temperature at ST is taken to be 25 °C

V do :

Average voltage across the diode

V :

Output voltage of the PV cell

V pv :

Output voltage of the PV array

V module :

Output voltage of the PV module with bypass diode

References

  1. C.S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, 2nd edn. (PHI Learning, Bombay, 2011)

    Google Scholar 

  2. Deutsche Gesellschaft Für Sonnenenergie, Planning and Installing Photovoltaic Systems: A Guide for Installers and Architects, and Engineers, 2nd edn. (London, Sterling, VA, The German Energy Society, Earth Scab, 2008) pp. 152–157

  3. C. Lashway, Photovoltaic system testing techniques and results. IEEE Trans. Energy Convers. 3(3), 503–506 (1988)

    Article  Google Scholar 

  4. E. Molenbroek, D.W. Waddington, K.A. Emery, Hot spot susceptibility and testing of PV modules. In Proceedings of Conference Rec 22nd IEEE Photovoltaic Specialists Conference, vol. 1 (1991), pp. 547–552

  5. S. Silvestre, A. Boronat, A. Chouder, Study of bypass diodes configuration on PV modules. Appl. Energy 86(9), 1632–1640 (2009)

    Article  Google Scholar 

  6. G. Lijun, R.A. Dougal, L. Shengyi, A.P. Iotova, Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Trans. Ind. Electron. 56(5), 1548–1556 (2009)

    Article  Google Scholar 

  7. T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  8. A. Safari, S. Mekhilef, Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)

    Article  Google Scholar 

  9. H. Patel, V. Agarwal, Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans. Ind. Electron. 55(4), 1689–1698 (2008)

    Article  Google Scholar 

  10. J. Young-Hyok, J. Doo-Yong, W. Chung-Yuen, L. Byoung-Kuk, K. Jin-Wook, A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Elctron. 26(4), 1001–1009 (2011)

    Article  Google Scholar 

  11. E. Koutroulis, F. Blaabjerg, A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J. Photovolt. 2(2), 184–190 (2012)

    Article  Google Scholar 

  12. Syafaruddin, E. Karatepe, T.Hiyama. Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew. Power Gener. 3(2), 239–253 (2009)

    Article  Google Scholar 

  13. D.C. Huynh, T.M. Nguyen, M.W. Dunnigan, M.A. Mueller, Global MPPT of Solar PV Modules using a Dynamic PSO Algorithm under Partial Shading Conditions. In Proceedings of IEEE Conference on Clean Energy and Technology (CEAT) (2013), pp. 134–139

  14. K. Ishaque, Z. Salam, A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans. Ind. Electron. 60(8), 3195–3206 (2013)

    Google Scholar 

  15. K. Ishaque, Z. Salam, S. Mekhilef, A. Shamsudin, Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl. Energy 99, 297–308 (2012)

    Article  Google Scholar 

  16. E. Karatepe, M. Boztepe, M. Colak, Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells. Sol. Energy 81, 977–992 (2007)

    Article  Google Scholar 

  17. D. Dzung, B. Lehman, An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Trans. Ind. Electron. 55(7), 2644–2654 (2008)

    Article  Google Scholar 

  18. N.D. Kaushika, N.K. Gautam, Energy yield simulations of interconnected solar PV arrays. IEEE Trans. Energy Convers. 18(1), 127–133 (2003)

    Article  Google Scholar 

  19. G. Velasco-Quesada, F. Guinjoan-Gispert, R. Pique-Lopez, M. Roman-Lumbreras, A. Conesa-Roca, Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems. IEEE Trans. Ind. Electron. 56(11), 4319–4331 (2009)

    Article  Google Scholar 

  20. M.Z.S. El-Dein, M. Kazerani, M.M.A. Salama, Optimal photovoltaic array reconfiguration to reduce partial shading losses. IEEE Trans. Sustain. Energy 4(1), 145–153 (2013)

    Article  Google Scholar 

  21. B.I. Rani, G.S. Ilango, C. Nagamani, Enhanced power generation from PV array under partial shading conditions by Shade dispersion using Su Do Ku configuration. IEEE Trans. Sustain. Energy 4(3), 594–601 (2013)

  22. A. Maki, S. Valkealahti, Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions. IEEE Trans. Energy Convers. 27(1), 173–183 (2012)

    Article  Google Scholar 

  23. S. Busquets-Monge, J. Rocabert, P. Rodriguez, S. Alepuz, J. Bordonau, Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array. IEEE Trans. Ind. Electron. 55(7), 2713–2723 (2008)

    Article  Google Scholar 

  24. S. Busquets-Monge, S. Alepuz, J. Bordonau, J. Peracaula, Voltage balancing control of diode-clamped multilevel converters with passive front-ends. IEEE Trans. Power Electron. 23(4), 1751–1758 (2008)

    Article  Google Scholar 

  25. M.C. Cavalcanti, A.M. Farias, K.C. Oliveira, F.A.S. Neves, J.L. Afonso, Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems. IEEE Trans. Ind. Electron. 59(1), 435–443 (2012)

    Article  Google Scholar 

  26. R. Kadri, J.-P. Gaubert, G. Champenois, Non dissipative string current diverter for solving the cascaded DC–DC converter connection problem. IEEE Tnans. Power Electron. 27(3), 1249–1258 (2012)

    Article  Google Scholar 

  27. T.K. Soon, S. Mekhilef, A. Safari, Simple and low cost incremental conductance maximum power point tracking using buck-boost converter. J. Renew. Sustain. Energy 5, 023106 (2013)

    Article  Google Scholar 

  28. M. Seyedmahmoudian, S. Mekhilef, R. Rahmani, R. Yusof, E.T. Renani, Analytical modeling of partially shaded photovoltaic systems. Energies 6, 128–144 (2013)

    Article  Google Scholar 

  29. E.I. Batzelis, I.A. Routsolias, S.A. Papathanassiou, An explicit PV string model based on the Lambert function and simplified MPP expressions for operation under partial shading. IEEE Trans. Sustain. Energy 5(1), 301–312 (2014)

    Article  Google Scholar 

  30. M. Villalva, J.R. Gazoli, E.R. Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)

    Article  Google Scholar 

  31. G. Carannante, C. Fraddanno, M. Pagano, L. Piegari, Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation. IEEE Trans. Ind. Electron. 56(11), 4374–4380 (2009)

    Article  Google Scholar 

  32. P. Lei, Y. Li, J.E. Seem, Sequential ESC-based global MPPT control for photovoltaic array with variable shading. IEEE Trans. Sustain. Energy 2(3), 348–358 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The first author is thankful to the IT Department, Ministry of Kerala for the providing the facilities under the SPEED IT Programme for undergoing research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vijayalekshmy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalekshmy, S., Rama Iyer, S. & Beevi, B. Comparative Analysis on the Performance of a Short String of Series-Connected and Parallel-Connected Photovoltaic Array Under Partial Shading. J. Inst. Eng. India Ser. B 96, 217–226 (2015). https://doi.org/10.1007/s40031-014-0143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-014-0143-7

Keywords

Navigation