Skip to main content

Advertisement

Log in

Effect of Operating Parameters on O3, O3/UV, O3/UV/PS Process Using Bubble Column Reactor for Degradation of Reactive Dyes

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Reactive dyes are widely consumed in the textile industrial sector due to their excellent properties, bright color, excellent color fastness, and ease of application; nevertheless, they are challenging to treat using existing conventional treatment methods due to their refractory and hazardous nature. In the present work, simulated reactive dye wastewater degradation was experimented with using Ozonation, O3/UV, and O3/UV/PS process. The experiments were carried out in a 3 L reactor for two different reactive dyes: reactive red 120 (RR120) and reactive yellow 145 (RY145), with their initial concentration ranges from 500 to 1500 mgL−1. The present study concludes that simple ozonation resulted in only 49% TOC removal, while O3/UV processes removed 57% TOC after 90 min of treatment. The highest efficiency was achieved in a coupled O3/UV/PS process with TOC removal of 88% at 66 W UV intensity, 1:40 TOC:PS ratio, 1.86 gh−1 ozone dose, and alkaline pH. It was also observed that the TOC removal was higher in RR120 compared to RY145. Finally, electrical energy per order was evaluated for the various ozone-based AOPs, and O3/UV/PS provided the best results with % TOC removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. J. Wang, H. Chen, R. Yuan, F. Wang, F. Ma, B. Zhou, Intensified degradation of textile wastewater using a novel treatment of hydrodynamic cavitation with the combination of ozone. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.103959

    Article  Google Scholar 

  2. Mohammed, A E, H H Hamed, W M Sh Alabdraba, and O M Ali. 2019. "COD removal from disperse blue dye 79 in wastewater by using Ozone-Fenton process." IOP Conf. Series: Materials Science and Engineering. 1-9. doi:https://doi.org/10.1088/1757-899X/518/6/062015.

  3. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innovat 3, 275–290 (2019). https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  4. S. Ledakowicz, M. Solecka, R. Zylla, Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J. Biotechnol. 89, 175–184 (2001)

    Article  Google Scholar 

  5. L. Bilinska, K. Blus, M. Foszpanczyk, M. Gmurek, S. Ledakowicz, Catalytic ozonation of textile wastewater as a polishing step after industrial scale electrocoagulation. J Environ Manage 265, 110502 (2020). https://doi.org/10.1016/j.jenvman.2020.110502

    Article  Google Scholar 

  6. S. Alahiane, A. Sennaoui, F. Sakr, M. Dinne, S. Qourzal, A. Assabbane, Photo-mineralization of azo dye reactive yellow 145 in aqueous medium by TiO2-coated non-woven fibres. Mediterranean J Chem 10(2), 107–115 (2020). https://doi.org/10.13171/mjc10102002051208sa

    Article  Google Scholar 

  7. J. Dutta, A. Ahmed, A study of azo dye reactive red 120 induced genotoxicity on allium cepa L. J. Chem. Pharm. Res. 8(12), 93–97 (2016)

    Google Scholar 

  8. A. Navaei, M. Yazdani, H. Alidadi, M. Dankoob, Z. Bonyadi, A. Dehghan, A. Hosseini, Biosorption of Reactive Red 120 dye from aqueous solution using Saccharomyces cerevisiae: RSM analysis, isotherms and kinetic studies. Desalin. Water Treat. 171, 418–427 (2019). https://doi.org/10.5004/dwt.2019.24780

    Article  Google Scholar 

  9. A.L. Singh, S. Chaudhary, S. Kumar, A. Kumar, A. Singh, A. Yadav, Biodegradation of Reactive Yellow-145 azo dye using bacterial consortium: A deterministic analysis based on degradable Metabolite, phytotoxicity and genotoxicity study. Chemosphere 300, 134504 (2022). https://doi.org/10.1016/j.chemosphere.2022.134504

    Article  Google Scholar 

  10. S. Krishnasamy, B.A. SaiAtchyuth, G. Ravindiran, B. Subramaniyan, M. Ramalingam, J.U.B.S. Vamsi, B. Ramesh, N.A. Razack, Effective removal of reactive yellow 145 (RY145) using biochar derived from groundnut shell. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/8715669

    Article  Google Scholar 

  11. K.-T. Chung, Azo dyes and human health: A review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34(4), 233–261 (2016). https://doi.org/10.1080/10590501.2016.1236602

    Article  MathSciNet  Google Scholar 

  12. L. Pandian, R. Rajasekaran, P. Govindan, Nanophotocatalytic ozonation of textile dyeing wastewater using Cu-ZnO nanocatalyst and study of reactor influencing parameters. Orient J Chem 35(1), 384–390 (2019)

    Article  Google Scholar 

  13. N. Azbar, T. Yonar, K. Kestioglu, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55, 35–43 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.046

    Article  Google Scholar 

  14. F. Nilsson, Application of ozone in wastewater treatment: Oxidation of pharmaceuticals and filamentous bulking sludge (Department of Chemical Engineering, Lund University, Lund, 2017)

    Google Scholar 

  15. O.S.G. Soares, J.J. Orfao, D. Portela, A. Vieira, M.F.R. Pereira, Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. J Hazardous Mater 137(3), 1664–1673 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.006

    Article  Google Scholar 

  16. L. Bilinska, M. Gmurek, S. Ledakowicz, Application of advanced oxidation technologies for decolorization and mineralization of textile wastewaters. J. Adv. Oxid. Technol 18(2), 185–194 (2015)

    Google Scholar 

  17. A.M. Soubh, M. Baghdadi, M.A. Abdoli, B. Aminzadeh, Activation of persulfate using an industrial iron-rich sludge as an efficient nanocatalyst for landfill leachate treatment. Catalysts 8(5), 218 (2018). https://doi.org/10.3390/catal8050218

    Article  Google Scholar 

  18. Mo. Li, Q. Wen, Z. Chen, Y. Tang, B. Yang, Comparison of ozonation and UV based oxidation as pre-treatment process for ultrafiltration in wastewater reuse: Simultaneous water risks reduction and membrane fouling mitigation. Chemosphere 244, 125449 (2019). https://doi.org/10.1016/j.chemosphere.2019.125449

    Article  Google Scholar 

  19. S. Sharma, N.P. Chokshi, J.P. Ruparelia, Comparative studies for the degradation of Reactive Black 5 dye employing ozone-based AOPs. Nanotechnology for Environmental Engineering 7(1), 9 (2022). https://doi.org/10.1007/s41204-021-00180-7

    Article  Google Scholar 

  20. E. Mena, A. Rey, F.J. Beltrán, TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on thedirect-indirect model. Chem. Eng. J. 339, 369–380 (2018). https://doi.org/10.1016/j.cej.2018.01.122

    Article  Google Scholar 

  21. Nikita P. Chokshi, Jayesh P. Ruparelia. 2021. "Synthesis of Nano Ag-La-Co Composite Metal Oxide for Degradation of RB 5 Dye Using Catalytic Ozonation Process." Ozone: Science and Engineering 1-14. https://doi.org/10.1080/01919512.2021.1901070

  22. J. Lee, U. von Gunten, J.-H. Kim, Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54(6), 3064–3081 (2020). https://doi.org/10.1021/acs.est.9b07082

    Article  Google Scholar 

  23. S. Sandip, R. Jayesh, Comparative study of ozone-based AOPs for degradation of Reactive Red 120. Res. J. Chem. Environ 26(2), 41–46 (2022)

    Article  Google Scholar 

  24. A.R. Quaff, S. Venkatesh, K. Venkatesh, Degradation of azo dye by ozone oxidation: cost analysis and buffering effects on dye decomposition. Natl. Acad. Sci. Lett. 44, 339–341 (2021). https://doi.org/10.1007/s40009-020-01008-9

    Article  Google Scholar 

  25. B. Adiraju, A.K. Saroha, Kinetics of ozone oxidation of acid red 131 monoazo dye in aqueous solution. J. Hazard. Toxic Radioact. Waste 21, 1–5 (2016)

    Google Scholar 

  26. C.Z. Abidin, M.R. Azner, O.-A. Fahmi, S.N.N.M. Makhtar, N.R. Rahmat, Decolourization of an azo dye in aqueous solution by ozonation in a semi-batch bubble column reactor. ScienceAsia 41, 49–54 (2015)

    Article  Google Scholar 

  27. S. Wijannarong, S. Aroonsrimorakot, P. Thavipoke, A. Kumsopa, S. Sangjan, Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Proc. 5, 279–282 (2013)

    Article  Google Scholar 

  28. K. Turhan, S. Ilknur Durukan, A. Ozturkcan, Z. Turgut, Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigm. 92, 897–901 (2012)

    Article  Google Scholar 

  29. E. Kusvuran, O. Gulnaz, A. Samil, Ö. Yildirim, Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes. J. Hazard. Mater. 186, 133–143 (2011)

    Article  Google Scholar 

  30. A.R. Tehrani-Bagha, N.M. Mahmoodi, F.M. Menger, Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260, 34–38 (2010)

    Article  Google Scholar 

  31. M. Tokumura, T. Katoh, Y. Kawase, Dynamic modeling and simulation of ozonation in a semibatch bubble column reactor: Decolorization and mineralization of azo dye orange II by ozone. Ind. Eng. Chem. Res. 48, 7965–7975 (2009)

    Article  Google Scholar 

  32. M. Sundrarajan, G. Vishnu, K. Joseph, Ozonation of light-shaded exhausted reactive dye bath for reuse. Dyes Pigm. 75, 273–278 (2007)

    Article  Google Scholar 

  33. K. Swaminathan, K. Pachhade, S. Sandhya, Decomposition of a dye intermediate, (H-acid) 1 amino-8-naphthol-3,6 disulfonic acid in aqueous solution by ozonation. Desalination 186, 155–164 (2005)

    Article  Google Scholar 

  34. F. Zhang, A. Yediler, X. Liang, A. Kettrup, Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C.I. Reactive Red 120. Dyes Pigm. 60, 1–7 (2004)

    Article  Google Scholar 

  35. I. Arslan, I.A. Balcioǧlu, D.W. Bahnemann, Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes Pigments 47, 207–218 (2000). https://doi.org/10.1016/S0143-7208(00)00082-6

    Article  Google Scholar 

  36. M.G. Abrile, M.L. Fiasconaro, M.E. Lovato, Optimization of reactive blue 19 dye removal using ozone and ozone/UV employing response surface methodology. SN Applied Sci 2(5), 995 (2020). https://doi.org/10.1007/s42452-020-2824-y

    Article  Google Scholar 

  37. A. Bharadwaj, A.K. Saroha, Treatment of synthetic dye solution containing acid red 131 dye by ozonation. Int. J. ChemTech Res. 5, 688–693 (2013)

    Google Scholar 

  38. B. Cuiping, X. Xianfeng, G. Wenqi, F. Dexin, X. Mo, Ge. Zhongxue, Xu. Nian, Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 278, 84–90 (2011)

    Article  Google Scholar 

  39. H. Khan, N. Ahmad, A. Yasar, R. Shahid, Advanced oxidative decolorization of red Cl-5B: Effects of dye concentration, process optimization and reaction kinetics. Polish J. of Environ. Stud. 19(1), 83–92 (2010)

    Google Scholar 

  40. C.-H. Wu, H.-Y. Ng, Degradation of C.I. reactive red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption. J. Hazard. Mater. 152, 120–127 (2008)

    Article  Google Scholar 

  41. H.-J. Hsing, E.-E. Pen-Chi, C. Chang, M.-Y. Chen, The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. J. Hazard. Mater. 141, 8–16 (2007)

    Article  Google Scholar 

  42. Liu BW, Chou MS, Kao CM, & Huang BJ (2004) Evaluation of selected operational parameters for the decolorization of dye-finishing wastewater using UV/ozone. Ozone: Science and Engineering, 26(3): 239-245.

  43. X. Liu, L. Wen, C. Wang, Le. Zhang, A. Zhang, Treatment of dinitrodiazophenol industrial wastewater by an ozone/persulfate process. Desalin. Water Treat. 198, 224–231 (2020). https://doi.org/10.5004/dwt.2020.25913

    Article  Google Scholar 

  44. A. Amr, S. Salem, H.A. Aziz, M.J.K. Bashir, S.Q. Aziz, T.M. Alslaibi, Comparison and optimization of ozone–based advanced oxidation processes in the treatment of stabilized landfill leachate. J Eng Res Technol 2(2), 122–130 (2015)

    Google Scholar 

  45. A. Amr, S. Salem, H.A. Aziz, M.N. Adlan, M.J.K. Bashir, Pretreatment of stabilized leachate using ozone/persulfate oxidation process. Chem Eng J 221, 492–499 (2013)

    Article  Google Scholar 

  46. X. Yu, Q. Wenlei, X. Yuan, L. Sun, F. Pan, D. Xia, Synergistic mechanism and degradation kinetics for atenolol elimination via integrated UV/ozone/peroxymonosulfate process. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.124393

    Article  Google Scholar 

  47. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation processes. J Adv Oxidat Technol 1(1), 13–17 (1996)

    Google Scholar 

  48. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 73(4), 627–637 (2001)

    Article  Google Scholar 

  49. N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason. Sonochem. 17(6), 990–1003 (2010)

    Article  Google Scholar 

  50. O.C. Olatunde, A.T. Kuvarega, D.C. Onwudiwe, Photo enhanced degradation of contaminants of emerging concern in waste water. Emerging Contaminants 6, 283–302 (2020). https://doi.org/10.1016/j.emcon.2020.07.006

    Article  Google Scholar 

  51. Z. Liu, K. Demeestere, S. Van Hulle, Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: A review. J Environ Chem Eng 9(4), 105599 (2021). https://doi.org/10.1016/j.jece.2021.105599

    Article  Google Scholar 

  52. A.H. Hilles, S.S. Abu, R.A. Amr, O.D. Hussein El-Sebaie, A.I. Arafa, Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. J. Environ. Manage. 166, 493–498 (2016). https://doi.org/10.1016/j.jenvman.2015.10.051

    Article  Google Scholar 

  53. K. Tong, Z. Zhang, A. Lin, Q. Song, G. Ji, D. Wang, M. Zhang, Treatment of super heavy oil wastewater by a combined process of lignite-activated coke adsorption and immobilized biological filter degradation: performance and the relevant microbial community analysis. J. Chem. Technol. Biotechnol. 93(10), 2942–2951 (2018). https://doi.org/10.1002/jctb.5650

    Article  Google Scholar 

  54. L. Chen, Y. Xu, Y. Sun, Combination of coagulation and ozone catalytic oxidation for pretreating coking wastewater. Int J Environ Res Public Health 16(10), 1705 (2019). https://doi.org/10.3390/ijerph16101705

    Article  Google Scholar 

  55. Z. Yang, Y. Zhang, W. Zhu, X. Zan, L. Zhang, Y. Liu, Effective oxidative degradation of coal gasification wastewater by ozonation: A process study. Chemosphere 255, 126963 (2020)

    Article  Google Scholar 

  56. Hilles AH, AMR, SSA, Alkarkhi AF, & Hossain MS (2019) The effect of persulfate oxidation on the biodegradability of concentrated anaerobic stabilized leachate. Sains Malaysiana, 48(11), 2381-2390https://doi.org/10.17576/jsm-2019-4811-09.

  57. F. Ali, J.A. Khan, N.S. Shah, M. Sayed, H.M. Khan, Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations. Process Saf. Environ. Prot. 117, 307–314 (2018). https://doi.org/10.1016/j.psep.2018.05.004

    Article  Google Scholar 

  58. L. Bilinska, M. Gmurek, S. Ledakowicz, Comparison between industrial and simulated textile wastewater treatment by AOPs–Biodegradability, toxicity and cost assessment. Chem. Eng. J. 306, 550–559 (2016). https://doi.org/10.1016/j.cej.2016.07.100

    Article  Google Scholar 

  59. A.C. Mecha, M.S. Onyango, A. Ochieng, C.J.S. Fourie, M.N.B. Momba, Synergistic effect of UV–vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study. J. Catal. 341, 116–125 (2016). https://doi.org/10.1016/j.jcat.2016.06.015

    Article  Google Scholar 

  60. M.E. Lovato, M.B. Gilliard, A.E. Cassano, C.A. Martín, Kinetics of the degradation of n-butyl benzyl phthalate using O3/UV, direct photolysis, direct ozonation and UVeffects. Environ Sci Pollut Res (2014). https://doi.org/10.1007/s11356-014-2796-9

    Article  Google Scholar 

  61. S. Gurudev, S. Subramaniam, F. Chiampo, UV light-irradiated photocatalytic degradation of coffee processing wastewater using TiO2 as catalyst. Environments 7(47), 1–13 (2020). https://doi.org/10.3390/environments7060047

    Article  Google Scholar 

  62. M.A. Hassaan, A. El Nemr, F.F. Madkour, Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. Egypt. J. Aquat. Res. 43, 11–19 (2017). https://doi.org/10.1016/j.ejar.2016.09.006

    Article  Google Scholar 

  63. G.G. Bessegato, J.C. Cardoso, B.F. Da Silva, M.V.B. Zanoni, Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in acid yellow 1 mineralization. Appl Catalysis B: Environ 180, 161–168 (2016). https://doi.org/10.1016/j.apcatb.2015.06.013

    Article  Google Scholar 

  64. N.P. Chokshi, D. Patel, R. Atkotiya, J. Ruparelia, Catalytic ozonation of reactive black 5 in aqueous solution over a La-Co-O catalyst. J Indian Chem Soc 97, 373–378 (2020)

    Google Scholar 

  65. Chokshi, N. P., & Ruparelia, J. P. (2020). Catalytic Ozonation of Reactive Black 5 Over Silver–Cobalt Composite Oxide Catalyst. Journal of The Institution of Engineers (India): Series A, 101, 433-443. https://doi.org/10.1007/s40030-020-00454-4.

  66. Kerwin, Rakness. 2011. Ozone in Drinking Water Treatment: Process Design, Operation, and Optimization. American water works association.

  67. J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 98, 39–46 (2016). https://doi.org/10.1016/j.watres.2016.04.004

    Article  Google Scholar 

  68. A. Ikhlaq, M. Zafar, F. Javed, A. Yasar, A. Akram, S. Shabbir, F. Qi, Catalytic ozonation for the removal of reactive black 5 (RB-5) dye using zeolites modified with CuMn2O4/gC3N4 in a synergic electro flocculation-catalytic ozonation process. Water Sci. Technol. 84(8), 1943–1953 (2021). https://doi.org/10.2166/wst.2021.404

    Article  Google Scholar 

  69. B. Bakheet, S. Yuan, Z. Li, H. Wang, J. Zuo, S. Komarneni, Y. Wang, Electro-peroxone treatment of Orange II dye wastewater. Water Res 47(16), 6234–6243 (2013)

    Article  Google Scholar 

  70. M.E. Lovato, C.A. Martín, A.E. Cassano, A reaction kinetic model for ozone decomposition in aqueous media valid for neutral and acidic pH. Chem Eng J 146(3), 486–497 (2009)

    Article  Google Scholar 

  71. K. Krawczyk, S. Wacławek, E. Kudlek, D. Silvestri, T. Kukulski, K. Grübel, M. Černík, UV-catalyzed persulfate oxidation of an anthraquinone based dye. Catalysts 10(4), 456 (2020). https://doi.org/10.3390/catal10040456

    Article  Google Scholar 

  72. C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-A review. Chem Eng J Adv 3, 100031 (2020). https://doi.org/10.1016/j.ceja.2020.100031

    Article  Google Scholar 

  73. E. Adar, Removal of acid yellow 17 from textile wastewater by adsorption and heterogeneous persulfate oxidation. Int J Environ Sci Technol 18, 483–498 (2021). https://doi.org/10.1007/s13762-020-02986-5

    Article  Google Scholar 

  74. D.A. House, Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 62(3), 185–203 (1962). https://doi.org/10.1021/cr60217a001

    Article  Google Scholar 

  75. Y. Deng, C.M. Ezyske, Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45(18), 6189–6194 (2011). https://doi.org/10.1016/j.watres.2011.09.015

    Article  Google Scholar 

  76. Y. Pan, Y. Zhang, M. Zhou, J. Cai, Y. Tian, Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0. Chem Eng J 361, 908–918 (2019). https://doi.org/10.1016/j.cej.2018.12.135

    Article  Google Scholar 

  77. J. Yang, M. Zhu, D.D. Dionysiou, Review - what is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. (2021). https://doi.org/10.1016/j.watres.2020.116627

    Article  Google Scholar 

  78. Abidin, Azner Che Zulzikrami, Muhammad Ridwan Fahmi, Soon An Ong, Ibrahim Abdul Haqi, Sabri Siti Nasuha, and Razali Nur Aqilah. (2019) Study of O3/S2O82- Advanced Oxidation Processes (AOPs) for Removal of Dye Industrial Effluents. MATEC Web of Conferences 255. doi:https://doi.org/10.1051/matecconf/201925503003.

  79. K. Kestioğlu, T. Yonar, N. Azbar, Feasibility of physico-chemical treatment and Advanced Oxidation Processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochem. 40, 2409–2416 (2005). https://doi.org/10.1016/J.PROCBIO.2004.09.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the management of Nirma University for providing all the financial help to carry out the experimental work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SS: Data acquisition, Experimentation, Interpretation, NC: Data acquisition, Experimentation, Interpretation, JR: Conceptualization, Visualization, Supervision. All authors contributed in preparation of the manuscript, they have read and approved the final manuscript.

Corresponding author

Correspondence to Jayesh P. Ruparelia.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Authors give copyrights to the journal as per the rules.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Chokshi, N. & Ruparelia, J.P. Effect of Operating Parameters on O3, O3/UV, O3/UV/PS Process Using Bubble Column Reactor for Degradation of Reactive Dyes. J. Inst. Eng. India Ser. A 104, 565–578 (2023). https://doi.org/10.1007/s40030-023-00735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-023-00735-8

Keywords

Navigation