Skip to main content
Log in

Artificial Neural Network Based Prediction for FRP-Confined Concrete Under Cyclic Loading

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Artificial neural network (ANN)-based model is developed for predicting the stress and strain enhancement of FRP wrapped concrete. An experimental database is considered in the investigations, which includes confinement using carbon, glass and aramid FRP on concrete. The aspect ratio, form of FRP wrap, number of confining layers, unconfined power, confining pressure and FRP characteristics are used as input parameters. Performance of proposed ANN models was evaluated by considering two indices, coefficient of determination and measure of root mean square error. The hoop strain, which is a main influencing parameter in confining pressure and dilation of FRP-confined concrete, is also predicted using ANN, for which no model predictions are available as of today. The predictive accuracy of some of the currently available models from the literature has been assessed by estimating the stress and strain enhancement due to FRP confinement by evaluating the root mean square error. The findings from the investigations show that ANN-based models can accurately predict the response close to experimental response and competitive enough compared to already existing mathematical models. The results pave way toward opening up the scope of data-driven models for the design of FRP confinement for structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Okelo, R.L. Yuan, Bond strength of fiber reinforced polymer rebars in normal strength concrete. J. Compos. Constr. 9(3), 203–213 (2005). https://doi.org/10.1061/(asce)1090-0268(2005)9:3(203)

    Article  Google Scholar 

  2. M. Demers, K.W. Neale, in Strengthening of Concrete Columns with Unidirectional Composite Sheets. Development in Short and Medium Span Bridge Engineering '94, ed. by A.A. Mufti, B. Bakht, L.G. Jaeger, Proc., 4th Int. Conf. on Short and Medium Bridges (Canadian Society for Civil Engineering, Montreal, 1994), pp. 895–905

  3. C. Aire, R. Gettu, J.R. Casas, S. Marques, D. Marques, Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model. Mater. Constr. 60(297), 19–31 (2010). https://doi.org/10.3989/mc.2010.45608

    Article  Google Scholar 

  4. V.M. Karbhari, Y. Gao, Composite jacketed concrete under uniaxial compression verification of simple design equations. J. Mater. Civ. Eng. 9(4), 185–193 (1997). https://doi.org/10.1061/(asce)0899-1561(1997)9:4(185)

    Article  Google Scholar 

  5. A. Mirmiran, M. Shahawy, M. Samaan, H. El Echary, J.C. Mastrapa, O. Pico, Effect of column parameters on FRP-confined concrete. J. Compos. Constr. ASCE 2(4), 175–185 (1998). https://doi.org/10.1061/(asce)1090-0268(1998)2:4(175)

    Article  Google Scholar 

  6. K. Miyauchi, S. Inoue, T. Kuroda, A. Kobayashi, Strengthening effects of concrete column with carbon fiber sheet. Trans. JCI 21, 143–150 (1999)

    Google Scholar 

  7. P. Rochette, P. Labossiere, Axial testing of rectangular column models confined with composites. J. Compos. Constr. 4(3), 129–136 (2000). https://doi.org/10.1061/(asce)1090-0268(2000)4:3(129)

    Article  Google Scholar 

  8. M. Saafi, H. Toutanji, Z. Li, Behaviour of concrete columns confined with fiber-reinforced polymer tubes. ACI Mater. J. 96(4), 500–509 (1999). https://doi.org/10.14359/652

    Article  Google Scholar 

  9. Y. Xiao, H. Wu, Compressive behaviour of concrete confined by carbon fiber composite jackets. J. Mater. Civ. Eng. ASCE 12(2), 139–146 (2000). https://doi.org/10.1061/(asce)0899-1561(2000)12:2(139)

    Article  Google Scholar 

  10. R. Abbasnia, H. Ziaadiny, Behavior of concrete prisms confined with FRP composites under axial cyclic compression. Eng. Struct. 32, 648–655 (2010). https://doi.org/10.1016/j.engstruct.2009.11.011

    Article  Google Scholar 

  11. L. Lam, J.G. Teng, C.H. Cheung, Y. Xiao, FRP-confined concrete under axial cyclic compression. Cement Concr. Compos. 28, 949–958 (2006). https://doi.org/10.1016/j.cemconcomp.2006.07.007

    Article  Google Scholar 

  12. T. Rousakis, Experimental investigation of concrete cylinders confined by carbon FRP sheets under monotonic and cyclic axial compressive load. Res. Rep. 44, 1–8 (2001)

    Google Scholar 

  13. Y. Shao, Z. Zhu, A. Mirmiran, Cyclic modeling of FRP-confined concrete with improved ductility. Cement Concr. Compos. 28(10), 959–968 (2006). https://doi.org/10.1016/j.cemconcomp.2006.07.009

    Article  Google Scholar 

  14. M.N. Fardis, H.H. Khalili, FRP-encased concrete as a structural material. Mag. Concr. Res. 34(121), 191–202 (1982). https://doi.org/10.1680/macr.1982.34.121.191

    Article  Google Scholar 

  15. L. Lam, J.G. Teng, Design-oriented stress–strain model for FRP-confined concrete. Constr. Build. Mater. 17(6–7), 471–489 (2003). https://doi.org/10.1016/s0950-0618(03)00045-x

    Article  Google Scholar 

  16. J.B. Mander, M.J.N. Priestley, R. Park, Theoretical stress–strain model for confined concrete. J. Struct. Eng. 114(8), 1804–1826 (1988). https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804)

    Article  Google Scholar 

  17. K. Newman, JJ.B. Newman, “Failure theories and design criteria for plain concrete”. in Proceedings of International Conference on Structures, Solid Mechanics, and Engineering Design (Wiley Interscience, New York City, 1971), pp. 936–95

  18. M. Samaan, A. Mirmiran, M. Shahawy, Model of concrete confined by fiber composites. J. Struct. Eng. 124(9), 1025–1031 (1998). https://doi.org/10.1061/(asce)0733-9445(1998)124:9(1025)

    Article  Google Scholar 

  19. J.G. Teng, T. Jiang, L. Lam, Y.Z. Luo, Refinement of a design-oriented stress–strain model for FRP-confined concrete. J. Compos. Constr. 13(4), 269–278 (2009). https://doi.org/10.1061/(asce)cc.1943-5614.0000012

    Article  Google Scholar 

  20. L. Lam, J.G. Teng, Ultimate condition of fiber reinforced polymer confined concrete. J. Compos. Constr. ASCE 8(6), 539–548 (2004). https://doi.org/10.1061/(asce)1090-0268(2004)8:6(539)

    Article  Google Scholar 

  21. P. Sadeghian, A. Fam, Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses. Eng. Struct. 87, 162–182 (2015). https://doi.org/10.1016/j.engstruct.2015.01.024

    Article  Google Scholar 

  22. G. Atefeh, B. Javad, Elman ANNs along with two different sets of inputs for predicting the properties of SCCs. Comput. Concrete 24(5), 399–412 (2019). https://doi.org/10.12989/cac.2019.24.5.399

    Article  Google Scholar 

  23. D. Fuat, Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Constr. Build. Mater. 22, 1428–1435 (2008). https://doi.org/10.1016/j.conbuildmat.2007.04.004

    Article  Google Scholar 

  24. S. Lee, C. Lee, Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks. Eng. Struct. 61, 99–112 (2014). https://doi.org/10.1016/j.engstruct.2014.01.001

    Article  Google Scholar 

  25. A. Cascardi, F. Micelli, M.A. Aiello, An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns. Eng. Struct. 140(1), 199–208 (2017). https://doi.org/10.1016/j.engstruct.2017.02.047

    Article  Google Scholar 

  26. N.F. Hany, E.G. Hantouche, M.H. Harajli, axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading. J. Compos. Constr. (2015). https://doi.org/10.1061/(asce)cc.1943-5614.0000557

    Article  Google Scholar 

  27. P. Li, Y.F. Wu, R. Gravina, Cyclic response of FRP-confined concrete with post-peak strain softening behavior. Constr. Build. Mater. 123(1), 814–828 (2016). https://doi.org/10.1016/j.conbuildmat.2016.07.065

    Article  Google Scholar 

  28. T. Ozbakkaloglu, E. Akin, Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression. J. Compos. Constr. 16(4), 451–463 (2012). https://doi.org/10.1061/(asce)cc.1943-5614.0000273

    Article  Google Scholar 

  29. S.A. Carey, K.A. Harries, Axial behavior and modeling of small-, medium-, and large-scale cylindrical sections confined with CFRP jackets. ACI Struct. J. 102(4), 596–604 (2005). https://doi.org/10.14359/14564

    Article  Google Scholar 

  30. C. Cui, S.A. Sheikh, Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers. J. Compos. Constr. 14(5), 553–561 (2010). https://doi.org/10.1061/(asce)cc.1943-5614.0000116

    Article  Google Scholar 

  31. T. Jiang, J.G. Teng, Analysis-oriented models for FRP-confined concrete: a comparative assessment. Eng. Struct. 29(11), 2968–2986 (2007). https://doi.org/10.1016/j.engstruct.2007.01.010

    Article  Google Scholar 

  32. G. Kharel, Behavior and Modeling of Variably Confined Concrete. MS thesis, University of South Carolina, Columbia, SC (2001)

  33. S. Matthys, L. Taerwe, K. Audenaert, “Test on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping”, in Proc, 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-4), NO. SP-188 (American Concrete Institute, Farmington, 1999), pp. 217–29.

  34. R. Modarelli, F. Micelli, O. Manni, FRP-confinement of hollow concrete cylinders and prisms. ACI SP 230, 1029–1046 (2005)

    Google Scholar 

  35. T. Ozbakkaloglu, Compressive behavior of concrete-filled FRP tube columns: assessment of critical column parameters. Eng. Struct. 51, 188–199 (2013). https://doi.org/10.1016/j.engstruct.2013.01.017

    Article  Google Scholar 

  36. Y.F. Wu, Y. Wei, General stress-strain model for steel- and FRP-confined concrete. J. Compos. Constr. (2015). https://doi.org/10.1061/(asce)cc.1943-5614.0000511

    Article  Google Scholar 

  37. Y.C. Guo, W.Y. Gao, J.J. Zenga, Z.J. Duan, X.Y. Ni, K.D. Peng, Compressive behavior of FRP ring-confined concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain model. Constr. Build. Mater. 201, 350–368 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.183

    Article  Google Scholar 

  38. S. Pessiki, K.A. Harries, J.T. Kestner, R. Sause, J.M. Ricles, Axial behaviour of reinforced concrete columns confined with FRP jackets. J. Compos. Constr. 5(4), 237–245 (2001). https://doi.org/10.1061/(asce)1090-0268(2001)5:4(237)

    Article  Google Scholar 

  39. O. Buyukozturk, T.M. Tseng, Concrete in biaxial cyclic compression. J. Struct. Eng. 110(3), 461–476 (1984). https://doi.org/10.1061/(asce)0733-9445(1984)110:3(461)

    Article  Google Scholar 

  40. F.E. Richart, A. Brandtzaeg, R.L. Brown, A Study of the Failure of Concrete Under Combined Compressive Stresses, Urbana, Illinois, USA. Bulletin No. 185, University of Illinois, Engineering Experimental Station (1928)

  41. P.L. Gian, A. Prota, G. Manfredi, E. Cosenza, Unified theory for confinement of RC solid and hollow circular columns. Compos. B: Eng. 39(7–8), 1151–1160 (2008)

    Google Scholar 

  42. M. Fraldi, L. Nunziante, F. Carannante, A. Prota, G. Manfredi, E. Cosenza, On the prediction of the collapse load of circular concrete columns confined by FRP. Eng. Struct. 30(11), 3247–3264 (2008)

    Article  Google Scholar 

  43. T. Yu, J.G. Teng, J.F. Chen, Chapter 55: Failure Criteria for FRP Composites (ICE manual of Construction Materials, 2009), pp. 649–654

  44. M.R. Spoelstra, G. Monti, FRP confined concrete model. J. Compos. Constr. ASCE 3(3), 143–150 (1999). https://doi.org/10.1061/(asce)1090-0268(1999)3:3(143)

    Article  Google Scholar 

  45. I. Howie, V.M. Karbhari, “Effect of materials architecture on strengthening efficiency of composite wraps for deteriorating columns in the North-East”, Infrastructure: New Materials and Methods of Repair, in Proc., 3rd Materials Engineering Conf., Material Engineering Division, ASCE, (1994), pp. 199–206

  46. V.M. Karbhari, D.A. Eckel, Effect of cold regions climate on composite jacketed concrete columns. ASCE J. Cold Regions Eng. 8(3), 73–86 (1994). https://doi.org/10.1061/(asce)0887-381x(1994)8:3(73)

    Article  Google Scholar 

  47. L.A. Bisby, A.J.S. Dent, M.F. Green, A comparison of confinement models for FRP wrapped concrete. ACI Struct. J. (2005). https://doi.org/10.14359/13531

    Article  Google Scholar 

  48. T. Ozbakkaloglu, J.C. Lim, Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model. Compos. B Eng. 55, 607–634 (2013). https://doi.org/10.1016/j.compositesb.2013.07.025

    Article  Google Scholar 

  49. F. Hosseinpour, R. Abbasnia, Experimental investigation of the stress-strain behavior of FRP confined concrete prisms. Adv. Concr. Constr. 2(3), 177–192 (2014). https://doi.org/10.12989/acc.2014.2.3.177

    Article  Google Scholar 

  50. H.A. Toutanji, Stress–strain characteristics of concrete columns externally confined with advanced fiber composite sheets. ACI Mater. J. 96(3), 397–404 (1999). https://doi.org/10.14359/639

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smitha Gopinath.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, S., Gopal, R. Artificial Neural Network Based Prediction for FRP-Confined Concrete Under Cyclic Loading. J. Inst. Eng. India Ser. A 103, 1015–1028 (2022). https://doi.org/10.1007/s40030-022-00678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-022-00678-6

Keywords

Navigation