Skip to main content
Log in

Solving Fuzzy Time–Cost Trade-Off in Construction Projects Using Linear Programming

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The time–cost trade-off has been recognized as a very significant aspect of construction management. Generally, time–cost trade-off can be modeled as a fuzzy linear programming problem with symmetric or non-symmetric fuzzy numbers. However, it was successfully solved when the fuzzy membership functions are only symmetric. In the present work, a novel approach is introduced to solve fuzzy linear programming problem with non-symmetric fuzzy membership functions by transforming it to its corresponding nearest symmetric one. The transformed problem is then converted to its crisp linear programming problem and then solved by the standard primal simplex method. Two examples are presented to show the effectiveness of the proposed approach, and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. Moselhi, Schedule Compression using the direct stiffness method. Can. J. Civ. Eng. 20, 65–72 (1993). https://doi.org/10.1139/l93-007

    Article  Google Scholar 

  2. C.-W. Feng, L. Liu, S.A. Burns, Using genetic algorithms to solve construction time–cost trade-off problems. J. Comput. Civ. Eng. 11, 184–189 (1997)

    Article  Google Scholar 

  3. D.X.M. Zheng, S.T. Ng, M.M. Kumaraswamy, Applying a genetic algorithm based multi objective approach for time cost optimization. J. Constr. Eng. Manag. 130, 168–176 (2004). https://doi.org/10.1061/(ASCE)0733-9364(2004)130:2(168)

    Article  Google Scholar 

  4. E. Fallah-mehdipour, O. Bozorg, M.M. Rezapour, M.A. Mariño, Expert Systems with Applications Extraction of decision alternatives in construction management projects: Application and adaptation of NSGA-II and MOPSO. Expert Syst. Appl. 39, 2794–2803 (2012). https://doi.org/10.1016/j.eswa.2011.08.139

    Article  Google Scholar 

  5. F.A. Zammori, M. Braglia, M. Frosolini, A fuzzy multi-criteria approach for critical path definition. Int. J. Proj. Manag. 27, 278–291 (2009). https://doi.org/10.1016/j.ijproman.2008.03.006

    Article  Google Scholar 

  6. M.J. Liberatore, Project schedule uncertainty analysis using fuzzy logic. Proj. Manag. J. 33, 15–22 (2002)

    Article  Google Scholar 

  7. M.J. Liberatore, Critical path analysis with fuzzy activity times. IEEE Trans. Eng. Manag. 55, 329–337 (2008). https://doi.org/10.1109/TEM.2008.919678

    Article  Google Scholar 

  8. P. Lorterapong, O. Moselhi, Project Network analysis using fuzzy set theory. J. Constr. Eng. Manag. 122, 308–318 (1996)

    Article  Google Scholar 

  9. C.-W. Feng, L. Liu, S.A. Burns, Stochastic construction time–cost trade-off analysis. J. Comput. Civ. Eng. 14, 117–126 (2000). https://doi.org/10.1061/(ASCE)0887-3801(2000)14:2(117)

    Article  Google Scholar 

  10. S.S. Leu, A.T. Chen, C.H. Yang, A GA-based fuzzy optimal model for construction time–cost trade-off. Int. J. Proj. Manag. 19, 47–58 (2001). https://doi.org/10.1016/S0263-7863(99)00035-6

    Article  Google Scholar 

  11. D.X.M. Zheng, S.T. Ng, Stochastic time-cost optimization model incorporating fuzzy sets theory and nonreplaceable front. J. Constr. Eng. Manag. 131, 176–186 (2005). https://doi.org/10.1061/(ASCE)0733-9364(2005)131:2(176)

    Article  Google Scholar 

  12. H.R. Tareghian, H. Taheri, An application of randomized minimum cut to the project time/cost tradeoff problem. Appl. Math. Comput. 173, 1200–1207 (2006). https://doi.org/10.1016/j.amc.2005.04.063

    Article  MathSciNet  MATH  Google Scholar 

  13. F.T. Lin, Fuzzy crashing problem on project management based on confidence-interval estimates, in Proc.—8th Int. Conf. Intell. Syst. Des. Appl. ISDA 2008, 2008, pp. 164–169. https://doi.org/https://doi.org/10.1109/ISDA.2008.190.

  14. E. Eshtehardian, A. Afshar, R. Abbasnia, Time–cost optimization: using GA and fuzzy sets theory for uncertainties in cost. Constr. Manag. Econ. 26, 679–691 (2008). https://doi.org/10.1080/01446190802036128

    Article  Google Scholar 

  15. E. Eshtehardian, A. Afshar, R. Abbasnia, Automation in construction fuzzy-based MOGA approach to stochastic time–cost trade-off problem. Autom. Constr. 18, 692–701 (2009). https://doi.org/10.1016/j.autcon.2009.02.001

    Article  Google Scholar 

  16. K.A. Haque, A.A. Hasin, Genetic algorithm for project time-cost optimization in fuzzy environment. J. Ind. Eng. Manag. 5, 364–381 (2012). https://doi.org/10.3926/jiem.410

    Article  Google Scholar 

  17. R.M. Ahari, S.T.A. Niaki, Fuzzy optimization in cost, time and quality trade-off in software projects with quality obtained by fuzzy rule base. Int. J. Model. Optim. 3, 176–179 (2013). https://doi.org/10.7763/IJMO.2013.V3.262

    Article  Google Scholar 

  18. A. Gholipour, M.R. Feylizadeh, Extend time–cost trade off model with weighted fuzzy goal additive programming. Tech. J. Eng. Appl. Sci. ©2013 TJEAS J. 3, 336 (2013)

  19. H. Ke, W. Ma, Y. Ni, Optimization models and a GA-based algorithm for stochastic time-cost trade-off problem. Appl. Math. Comput. 215, 308–313 (2009). https://doi.org/10.1016/j.amc.2009.05.004

    Article  MathSciNet  MATH  Google Scholar 

  20. R.A. Al Haj, S.M. El-Sayegh, time cost optimization model considering float consumption impact. J. Constr. Eng. Manag. 141, 04015001 (2015). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000966

    Article  Google Scholar 

  21. S. Hossain, S. Mahmud, M. Hossain, Fuzzy multi-objective linear programming for project management decision under uncertain environment with AHP based weighted average method. J. Mod. Sci. Technol. 4, 163–178 (2016)

  22. H. Naseri, M. Ghasbeh, Time–cost trade off to compensate delay of project using genetic algorithm and linear programming. Int. J. Innov. Manag. Technol. 9, 285–290 (2018). https://doi.org/10.18178/ijimt.2018.9.6.826

    Article  Google Scholar 

  23. B. Abinaya, M. Evangeline Jebaseeli, E. Henry Amirtharaj, An approach to solve fuzzy time cost trade off problems. Int. J. Res. Advent Technol. (IJRAT). Special Issue, (2019) 5–8.

  24. D. Golenko-Ginzburg, On the distribution of activity time in pert. J. Oper. Res. Soc. 39, 767–771 (1988). https://doi.org/10.1057/jors.1988.132

    Article  MATH  Google Scholar 

  25. H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978). https://doi.org/10.1016/0165-0114(78)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Tanaka, T. Okuda, K. Asai, On fuzzy-mathematical programming. J. Cybern. 3, 37–46 (1973). https://doi.org/10.1080/01969727308545912

    Article  MathSciNet  MATH  Google Scholar 

  27. H.J. Rommelfanger, The advantages of fuzzy optimization models in practical use. Fuzzy Optim. Decis. Mak. 3, 295–309 (2004). https://doi.org/10.1007/s10700-004-4200-6

    Article  MATH  Google Scholar 

  28. A. Amid, S.H. Ghodsypour, C. O’Brien, Fuzzy multiobjective linear model for supplier selection in a supply chain. Int. J. Prod. Econ. 104, 394–407 (2006). https://doi.org/10.1016/j.ijpe.2005.04.012

    Article  Google Scholar 

  29. K. Ganesan, P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers. Ann. Oper. Res. 143, 305–315 (2006). https://doi.org/10.1007/s10479-006-7390-1

    Article  MATH  Google Scholar 

  30. N. Mahdavi-Amiri, S.H. Nasseri, Duality in fuzzy number linear programming by use of a certain linear ranking function. Appl. Math. Comput. 180, 206–216 (2006). https://doi.org/10.1016/j.amc.2005.11.161

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Mahdavi-Amiri, S.H. Nasseri, Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy Sets Syst. 158, 1961–1978 (2007). https://doi.org/10.1016/j.fss.2007.05.005

    Article  MathSciNet  MATH  Google Scholar 

  32. S.H.N.N. Mahdavi-Amiri, Some duality results on linear programming problems with symmetric fuzzy numbers. Fuzzy Inf. Eng. 1, 59–66 (2009)

    Article  Google Scholar 

  33. S.H. Nasseri, A. Ebrahimnejad, S. Mizuno, Duality in fuzzy linear programming with symmetric trapezoidal numbers. Appl. Appl. Math. 05, 1467–1482 (2010)

    MathSciNet  MATH  Google Scholar 

  34. A. Ebrahimnejad, S.H. Nasseri, A dual simplex method for bounded linear programmes with fuzzy numbers. Int. J. Math. Oper. Res. 2, 762–779 (2010). https://doi.org/10.1504/IJMOR.2010.035498

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Ebrahimnejad, S.H. Nasseri, S.M. Mansourzadeh, Bounded primal simplex algorithm for bounded linear programming with fuzzy cost coefficients. Int. J. Oper. Res. Inf. Syst. 2, 96–120 (2011). https://doi.org/10.4018/joris.2011010105

    Article  Google Scholar 

  36. A. Ebrahimnejad, S.H. Nasseri, S.M. Mansourzadeh, Modified bounded dual network simplex algorithm for solving minimum cost flow problem with fuzzy costs based on ranking functions. J. Intell. Fuzzy Syst. 24, 191–198 (2013). https://doi.org/10.3233/IFS-2012-0545

    Article  Google Scholar 

  37. A. Ebrahimnejad, M. Tavana, A novel method for solving linear programming problems with symmetric trapezoidal fuzzy numbers. Appl. Math. Model. 38, 4388–4395 (2014). https://doi.org/10.1016/j.apm.2014.02.024

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Kumar, P. Kaur, J. Kaur, Fuzzy optimal solution of fully fuzzy project crashing problems with new representation of LR flat fuzzy numbers, in Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6743 LNAI (2011), pp. 171–174. https://doi.org/10.1007/978-3-642-21881-1_28.

  39. C. Veeramani, C. Duraisamy, M. Sumathi, Nearest symmetric trapezoidal fuzzy number approximation preserving expected interval. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 21, 777–794 (2013). https://doi.org/10.1142/S0218488513500372

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Bonnal, D. Gourc, G. Lacoste, Where do we stand with fuzzy project scheduling? J. Constr. Eng. Manag. 130, 114–123 (2004). https://doi.org/10.1061/(ASCE)0733-9364(2004)130:1(114)

    Article  Google Scholar 

  41. S.N. Sivanandam, S. Sumathi, S.N. Deepa, Introduction to Fuzzy Logic Using MATLAB (Springer, Berlin, 2007) https://doi.org/10.1007/978-3-540-35781-0

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israa Elkalla.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkalla, I., Elbeltagi, E. & El Shikh, M. Solving Fuzzy Time–Cost Trade-Off in Construction Projects Using Linear Programming. J. Inst. Eng. India Ser. A 102, 267–278 (2021). https://doi.org/10.1007/s40030-020-00489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-020-00489-7

Keywords

Navigation