Skip to main content
Log in

Mechanical Properties and Microstructure of Micro- and Nano-additives-Based Modified Concrete Composites: A Sustainable Solution

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The present study focuses on the effect of cement replacement with micro-silica fume (SF), nano-silica fume (NS) and fly ash (F) individually and in a combination of two additives, on the mechanical properties (split, flexural tensile and compressive strengths) of 22 modified concrete mixes. The microstructure analysis and chemical microanalysis of the mixes have also been undertaken. The addition of micro- and nano-silica fume alone enhances the strength of concrete. However, the addition of fly ash causes a reduction in the strength properties for all replacement percentages. The combination of micro- and nano-silica fume improves the mechanical properties of concrete for all percentages of replacement. The microstructure and chemical analysis of modified concrete show enhancement in the morphological properties of concrete owing to pore filling with dense and compact structure and C–H crystals reduction and denser structure in pastes due to the incorporation of micro- and nano-silica fume. The present experimental research shows that the concrete modified with industrial by-products establishes extra functionalities, thus well addressing the environmental sustainability issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Gartner, Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. (2004). https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  2. C. Shi, K. Zheng, A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. (2007). https://doi.org/10.1016/j.resconrec.2007.01.013

    Article  Google Scholar 

  3. M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production-present and future. Cem. Concr. Res. (2011). https://doi.org/10.1016/j.cemconres.2011.03.019

    Article  Google Scholar 

  4. C. Chen, G. Habert, Y. Bouzidi, A. Jullien, Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J. Clean. Prod. (2010). https://doi.org/10.1016/j.jclepro.2009.12.014

    Article  Google Scholar 

  5. E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. (2013). https://doi.org/10.1016/j.jclepro.2012.10.049

    Article  Google Scholar 

  6. G.M.S. Islam, M.H. Rahman, N. Kazi, Waste glass powder as partial replacement of cement for sustainable concrete practice. Int. J. Sustain. Built Environ. (2017). https://doi.org/10.1016/j.ijsbe.2016.10.005

    Article  Google Scholar 

  7. S.K. Agarwal, Pozzolanic activity of various siliceous materials. Cem. Concr. Res. (2006). https://doi.org/10.1016/j.cemconres.2004.06.025

    Article  Google Scholar 

  8. W. Tangchirapat, T. Saeting, C. Jaturapitakkul, K. Kiattikomol, A. Siripanichgorn, Use of waste ash from palm oil industry in concrete. Waste Manag. (2007). https://doi.org/10.1016/j.wasman.2005.12.014

    Article  Google Scholar 

  9. J. De Brito, J. Ferreira, J. Pacheco, D. Soares, M. Guerreiro, Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete. J. Build Eng. (2016). https://doi.org/10.1016/j.jobe.2016.02.003

    Article  Google Scholar 

  10. National Ready Mixed Concrete Association N. CIP 36—Structural Lightweight Concrete. 2016

  11. M. Mazloom, A.A. Ramezanianpour, J.J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos (2004). https://doi.org/10.1016/S0958-9465(03)00017-9

    Article  Google Scholar 

  12. M. Pala, E. Özbay, A. Öztaş, M.I. Yuce, Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.009

    Article  Google Scholar 

  13. H. Yazici, The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete. Constr. Build. Mater. (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.002

    Article  Google Scholar 

  14. G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO 2. Cem. Concr. Res. (2004). https://doi.org/10.1016/j.cemconres.2003.11.013

    Article  Google Scholar 

  15. M. Collepardi, S. Collepardi, U. Skarp, R. Troli, Optimization of silica fume, fly ash and amorphous nano-silica in superplasticized high-performance concrete. ACI Spec Publ (2004). https://doi.org/10.14359/13273

    Article  Google Scholar 

  16. Khanzadi M, Tadayon M, Sepehri H, Sepehri M, Influence of nano-silica particles on mechanical properties and permeability of concrete, in 2nd International Conference on Sustainable Construction Materials and Technologies, 2010

  17. Nili M, Ehsani A, Shabani K, Influence of nano-SiO2 and microsilica on concrete performance, in Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies 2010

  18. J. Bi, I. Pane, B. Hariandja, I. Imran, The Use of Nanosilica for Improving of Concrete Compressive Strength and Durability. Appl. Mech. Mater. (2012). https://doi.org/10.4028/www.scientific.net/AMM.204-208.4059

    Article  Google Scholar 

  19. M.H. Zhang, J. Islam, S. Peethamparan, Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem Concr Compos (2012). https://doi.org/10.1016/j.cemconcomp.2012.02.005

    Article  Google Scholar 

  20. P. Aggarwal, R.P. Singh, Y. Aggarwal, Use of nano-silica in cement based materials—A review. Cogent Eng (2015). https://doi.org/10.1080/23311916.2015.1078018

    Article  Google Scholar 

  21. A. Wahab, B.D. Kumar, M. Bhaskar, S. Vijaya Kumar, B.L.P. Swami, Concrete composites with nano silica, condensed silica fume and fly ash—study of strength properties. Int J Sci Eng Res 4, 1–4 (2013)

    Google Scholar 

  22. A.S. Sai, Comparative studies on high strength concrete mixes using micro silica and nanosilica. IJETR 1, 29–34 (2013)

    Google Scholar 

  23. R.K. Ibrahim, F.R. Ahmed, The effect of nanosilica in compensating the strength loss caused by using high volume fly ash in high strength mortars. Int J Eng Sci Innov Technol 4, 232–241 (2015)

    Google Scholar 

  24. T. Priyadarshana, R. Dissanayake, P. Mendis, Effects of nano silica, micro silica, fly ash and bottom ash on compressive strength of concrete. J Civ Eng Archit 9, 1146–1152 (2015). https://doi.org/10.17265/1934-7359/2015.10.002

    Article  Google Scholar 

  25. Bureau of Indian Standard(BIS). Methods of physical tests for hydraulic cement. Test 2005. https://doi.org/10.1016/j.proenv.2012.10.108

    Article  Google Scholar 

  26. ASTM. Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM C1240 2012. https://doi.org/10.1520/c1240-14.2

  27. IS 3812(part-1):2003. Indian Standard Pulverized Fuel Ash- Specification. Bur Indian Stand New Delhi, India 2003. https://doi.org/10.1083/jcb.200402138

    Article  Google Scholar 

  28. IS:2386 (Part-1). Method of Test for Aggregate for Concrete. Bur Indian Stand New Delhi 1963

  29. Bureau of Indian Standards. IS 456: 2000—Plain and Reinforced Concrete—Code and Practice. Fourth. New Delhi 2000

  30. Bureau of Indian Standards:10262-2009. Concrete Mix Proportioning—Guidelines. Bur Indian Stand 2009. https://doi.org/10.1016/j.proeng.2015.11.077

    Article  Google Scholar 

  31. IS516. IS516-Testing of concrete. IS516 2004

  32. IS:5816. Splitting Tensile Strength of Concrete. Bur Indian Stand New Delhi 1999. https://doi.org/10.1007/s11746-001-0303-2

    Article  Google Scholar 

  33. L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, J.A. Labrincha, Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars. Adv. Appl. Ceram. (2010). https://doi.org/10.1179/174367509X12502621261659

    Article  Google Scholar 

  34. H. Biricik, N. Sarier, Comparative study of the characteristics of nano silica -, silica fume—and fly ash—incorporated cement mortars. Mater Res (2014). https://doi.org/10.1590/S1516-14392014005000054

    Article  Google Scholar 

  35. S.A. El-Baky, S. Yehia, S. Khalil Brahim, Influence of Nano-Silica Addition on Properties of Fresh and Hardened Cement Mortar, in 5th International Conference on Nanocon, Brno, Czech Republic: 2013, p. 16–8

  36. Indian Standards. IS-456: 2000—Plain and Reinforced Concrete—Code of Practice (Fourth Revision). 2000

  37. ACI Committee 318. Building Code Requirements for Structural Concrete. 2014

  38. NZS 3101. Concrete Structures Standard, Part 1: The Design of Concrete Structures. Stand Assoc New Zeal 2006

  39. British Standards Institution BSI. Structural use of concrete—Part 1: Code of practice for design and construction. Br Stand 1998

  40. ACI 318-14. Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI 48331, U.S.A. 2014

  41. CEB-FIP MODEL CODE 1990. Thomas Telford Publishing; 1993. https://doi.org/10.1680/ceb-fipmc1990.35430

  42. N.J. Carino, H.S. Lew, Re-examination of the relation between splitting tensile and compressive strength of normal weight concreTE. J. Am. Concr. Inst. 79, 214–219 (1982)

    Google Scholar 

  43. F.A. Oluokun, E.G. Burdette, J.H. Deatherage, Splitting tensile strength and compressive strength relationship at early ages. ACI Mater. J. 88, 115–121 (1991)

    Google Scholar 

  44. N. Arioglu, Z. Canan Girgin, E. Arioglu, Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Mater. J. 103, 18–24 (2006)

    Google Scholar 

  45. R.L. Berger, J.D. McGregor, Influence of admixtures on the morphology of calcium hydroxide formed during tricalcium silicate hydration. Cem. Concr. Res. (1972). https://doi.org/10.1016/0008-8846(72)90022-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Al-Hagri, M.G., Shariq, M. et al. Mechanical Properties and Microstructure of Micro- and Nano-additives-Based Modified Concrete Composites: A Sustainable Solution. J. Inst. Eng. India Ser. A 101, 89–104 (2020). https://doi.org/10.1007/s40030-019-00411-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-019-00411-w

Keywords

Navigation