Skip to main content
Log in

Novel Trichomeristogenous Development of Pycnidium in Truncatella angustata BPF5 (Coelomycete)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Morphogenesis of pycnidium of Truncatella angustata BPF5 has been studied under in vitro culture on l-arabinoze medium. A single stalked, lemon shaped and papillate initial cell seems to take part in the formation of pycnidium. The apical papilla of initial cell elongates so as to give the initial a central position flanked by hyphae. This single initial by successive divisions becomes an oval pycnidial primordium (trichomeristogenous). Further enlargement of pycnidium seems to take place due to mechanical force exerted by successive conidial formation. At maturity, the pycnidium is melanized. Some primordia abort leaving behind ghost pycnidia in the central disc. The minimal supplemented media like l-arabinoze medium reduce vegetative growth but induce early pycnidial formation thus requiring less teasing operations during microscopy. This in turn avoids damage of fragile young structures and facilitates study of developmental stages. This is the first report of early stages of pycnidial development under in vitro condition in any of the Coelomycetous fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Watanbe K, Doi Y, Kobayashi T (1997) Pycnidial development of Phyllosticta harai and Spheropsis sp. Mycoscience 38:259–265. https://doi.org/10.1007/bf02464083

    Article  Google Scholar 

  2. Watanabe K, Kobayashi T, Doi Y (1998) Conidiomata of Truncatella sp. on different media. Nippon Kingakukai Kaiho 39:21–25

    Google Scholar 

  3. Murugan M, Arumugam P, Arunkumar K (2016) Developmental morphology of conidiomata in Phyllosticta Caryotae. J Bacteriol Mycol 3:1038

    Google Scholar 

  4. Watanabe K (1998) Conidiomatal development of Pestalatiopsis guepinii and P. neglecta on leaves of Gardenia jasminoides. Mycoscience 39:71–75. https://doi.org/10.1007/BF02461581

    Article  Google Scholar 

  5. Schnegg H (1915) Zur Entwicklungsgeschichte und Biologie der Pykniden, sowie der Schlingenmycelien und Hyphenknauel. Centralbl Bakt II 43:326

    Google Scholar 

  6. Kempton FE (1919) Origin and development of the Pycnidium. Bot Gaz 68(4):233–261

    Article  Google Scholar 

  7. DiCosmo F, Cole GT (2011) Morphogenesis of conidiomata in Chaetomella acutiseta (Coelomycetes). Can Bot 58:1129–1137. https://doi.org/10.1139/b80-139

    Article  Google Scholar 

  8. Taylor JE, Crous PW, Swart L (2001) Foliicolous and caulicolous fungi associated with Proteaceae cultivated in California. Mycotaxon 78:75–103

    Google Scholar 

  9. Hu LP, Ma CH, Yang GM, Tan WJ (1996) Studies on the causal agent of apple mouldy core and core rot. J Fruit Sci 13:157–161

    Google Scholar 

  10. Espinoza JG, Briceño EX, Keith L, Latorre BA (2008) Canker and twig dieback of blue berry caused by Pestalotiopsis spp. and a Truncatella spp. in Chile. Plant Dis 92:1407–1414. https://doi.org/10.1094/PDIS-92-10-1407

    Article  PubMed  Google Scholar 

  11. Arzanlou M, Torbati M, Jafary H (2012) Fruit rot of olive (Olea europaea) caused by Truncatella angustata. Plant Pathol Quar 2:117–123. https://doi.org/10.5943/ppq/2/2/4

    Article  Google Scholar 

  12. Eken C, Spanbayev A, Tulegenova Z, Abiev S (2009) First report of Truncatella angustata causing leaf spot on Rosa canina in Kazakhstan. Aust Plant Dis Notes 4:44–45. https://doi.org/10.1071/DN09018

    Article  Google Scholar 

  13. Aliddi A, Kowsari M, Javan-Nikkhah M, Karami S (2018) First report of leaf spot caused by Truncatella angustata on Persian Oak (Quercus brantii) in Iran. Plant Dis 102:1173

    Article  Google Scholar 

  14. Wenneker M, Pham KTK, Boekhoudtm LC, de Boer FA, van Leeuwen PJ, Hollinger T, Thomma BPHJ (2017) First report of Truncatella angustata causing postharvest rot on ‘Topaz’ apples in the Netherlands. Plant Dis 101:508

    Article  Google Scholar 

  15. Jagielski T, Zak I, Tyrak J, Bryk A (2015) First probable case of subcutaneous infection due to Truncatella angustata: a new fungal pathogen of humans. J Clin Microbiol 53:1961–1964. https://doi.org/10.1128/JCM.00400-15

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guba EF (1961) Monograph of Monochaetia and Pestalotia. Harvard University Press, Cambridge

    Google Scholar 

  17. Singh P, Hamid B, Lone MA, Ranjan K, Khan A, Chaurse VK, Sahay S (2012) Evaluation of Pectinase activity from the psychrophilic fungal strain Truncatella angustata-BPF5 for use in wine industry. J Endocytobiosis Cell Res 22:57–61

    CAS  Google Scholar 

  18. Sahay S (1999) Phenylalanine transport in Aspergillus nidulans: demeonstration of role of Phenylalanine binding protein. Ind J Exp Biol 37:152–156

    CAS  Google Scholar 

  19. Sutton BC (1980) The Coelomycetes. Commonwealth Mycological Institute, Kew, p 696

    Google Scholar 

  20. Nag Raj TR (1993) Coelomycetesous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo

    Google Scholar 

  21. Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8 s rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337. https://doi.org/10.1099/00207713-49-1-329

    Article  CAS  PubMed  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Ne M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim YK, Xiao CL, Rogers JD (2005) Influence of culture media and environmental factors on mycelia growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia 97(1):25–32. https://doi.org/10.3852/mycologia.97.1.25

    Article  CAS  PubMed  Google Scholar 

  24. Moran GP, Coleman DC, Sullivan DJ (2011) Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell 10(1):34–42. https://doi.org/10.1128/EC.00242-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046. https://doi.org/10.1371/journal.pgen.1000046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sahay S, Hamid B, Singh P, Ranjan K, Chauhan D, Rana RS, Chaurse VK (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 57(2):115–121. https://doi.org/10.1111/lam.12081

    Article  CAS  PubMed  Google Scholar 

  27. Sahay S, Lone MA, Jain P, Singh P, Chouhan D, Shezad F (2013) Cold-active moulds from Jammu and Kashmir, India as potential source of coldactive enzymes. Am J Curr Microbiol 1(1):1–13

    Google Scholar 

Download references

Acknowledgements

Financial assistance in the form of major project grant from Madhya Pradesh Council of Science and Technology, Bhopal is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Sahay.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Significance statement The accumulating evidences suggest that Truncatella angustata is pathogenic to economically important plants and possibly human being and source of cold-active enzymes, hence study of the biology of this taxon including pycnidium development is important.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahay, S. Novel Trichomeristogenous Development of Pycnidium in Truncatella angustata BPF5 (Coelomycete). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 979–985 (2019). https://doi.org/10.1007/s40011-018-1016-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-1016-7

Keywords

Navigation