Skip to main content

Advertisement

Log in

Effect of Mercury and Cadmium on the Oxygen Consumption and Gill Histology of Catla catla (Ham. 1822)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Mercury and cadmium are among the major heavy metal pollutants, contaminating aquatic ecosystems. These heavy metals were investigated in the present study for sub lethal toxicity on freshwater fish, Catla catla. The acute toxicity tests were conducted by static renewal bioassay method and 96 h LC50 value of mercury and cadmium to C. catla seed were found to be 0.0835 and 0.4225 mg L−1, respectively. For sub lethal studies 1, 3, 6, 12 and 24 % of the 96 h LC50 value were selected and significant decrease in oxygen consumption up to a maximum of 82.9 % for mercury and 79.8 % for cadmium as compared to control were observed. The gills of fish exposed to sub lethal concentration of the metals showed histological alterations including oedema, hemorrhage, hyperplasia, hypertrophy, necrosis, curling and fusion. Both, oxygen consumption and histopathological changes were observed to be dose and duration dependent. Present study also indicates higher toxicity of mercury as compared to cadmium on C. catla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  2. Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). Int J Environ Sci Technol 5:179–182. doi:10.1007/BF03326011

    Article  CAS  Google Scholar 

  3. Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarker of oxidative stress and heavy metal levels as induced by environmental pollution in African cat fish Clarias gariepinus from Nigeria, Ogun river. Int J Environ Res Public Health 4(2):158–165. doi:10.1016/j.ecoenv.2015.05.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Prato E, Biandolino F, Scardicchio C (2006) Test of acute toxicity of copper, cadmium and mercury in five marine species. Turk J Zool 30:285–290

    CAS  Google Scholar 

  5. Srivastava R, Srivastava N (2008) Changes in nutritive value of fish Channa puntatus after chronic exposure to Zinc. J Environ Biol 29:299–302

    PubMed  CAS  Google Scholar 

  6. Fernandes C, Fontaínhas-Fernandes A, Monteiro SM, Salgado MA (2007) Changes in plasma electrolytes and gill histopathology in wild Liza saliens from the Esmoriz-Paramos coastal lagoon. Bull Environ Contam Toxicol 79:301–305. doi:10.1007/s00128-007-9242-3

    Article  PubMed  CAS  Google Scholar 

  7. Jezierska B, Sarnowski P (2002) The effect of mercury, copper and cadmium during single and combined exposure on oxygen consumption of Oncorhynchus mykiss Wal. and Cyprinus carpio L. larvae. Arch Pol Fish 10(1):15–22

    Google Scholar 

  8. Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57:1591–1598. doi:10.1016/j.chemosphere.2004.07.033

    Article  PubMed  CAS  Google Scholar 

  9. NRCC (1979) Effects of mercury in the Canadian environment. NRCC/CNRC Publications, Ottawa, p 290

    Google Scholar 

  10. Fan AM (1987) Mercury. In: Fishbein L, Furst A, Mehlman MA (eds) Genotoxic and carcinogenic metals: environmental and occupational occurrence and exposure. Advances in modern environmental toxicology, vol 11. Princeton Scientific Publishing, Princeton

    Google Scholar 

  11. Sanfeliu C, Sebastia J, Cristofol R, Rodriquez-Farre E (2003) Neurotoxicity of organomercurial compounds. Neurotox Res 5:283–305

    Article  PubMed  Google Scholar 

  12. Masud S, Singh J, Ram RN (2005) Behavioural and hematological responses of Cyprinus carpio, exposed to mercuric chloride. J Environ Biol 26(2 Suppl):393–397

    PubMed  CAS  Google Scholar 

  13. Panigrahi AK, Misra BN (1980) Toxicological effects of a sublethal concentration of inorganic mercury on the freshwater fish, Tilapia mossambica Peters. Arch Toxicol 44(4):269–278. doi:10.1007/BF00278034

    Article  PubMed  CAS  Google Scholar 

  14. McCarty JF, Shugart LR (1990) Biomarkers of environmental contamination. Lewis Publishers, Florida

    Google Scholar 

  15. Jezierska B, Lugowska K, Witeska M (2009) The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem 35:625–640

    Article  PubMed  CAS  Google Scholar 

  16. Central Water Commission (2014) Status of trace and toxic metals in Indian Rivers. River Data Directorate, New Delhi, p 110066

    Google Scholar 

  17. Witeska M, Jezierska B, Wolnieki J (2006) Respiratory and hematological response of tench Tinca tinca(L.) to a short-term cadmium exposure. Aquac Int 14:141–152. doi:10.1007/s10499-005-9020-3

    Article  CAS  Google Scholar 

  18. Lacroix A, Hontela A (2004) A comparative assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout, Oncorhynchus mykiss, and yellow perch, Perca flavescens. Aquat Toxicol 67:13–21. doi:10.1016/j.aquatox.2003.11.010

    Article  PubMed  CAS  Google Scholar 

  19. Jezierska B, Slominska I (1997) The effect of copper on common carp (Cyprinus carpio L.) during embryonic and postembryonic development. Poll Arch Hydrobiol 44:261–272

    CAS  Google Scholar 

  20. Jezierska B, Witeska M (2001) Metal toxicity to fish. Wydawnictwo Akademii Podlaskiej, Siedlce, Poland, p 318

    Google Scholar 

  21. Voigt HR (2004) Concentrations of mercury (Hg) and cadmium (Cd) and the condition of some Coastal Baltic fishes”. Environ Fenn 21(26):8–13

    Google Scholar 

  22. Ahmad AK, Sarah A (2015) Human Health Risk Assessment of Heavy Metals in fish species collected from catchments of former tin mining. Int J Res Stud Sci Eng Technol 2(4):9–21

    Google Scholar 

  23. APHA (2005) Standard methods for the examination of water and wastewater, 21st Edn. Washington DC, USA

  24. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge Univ. Press, London, p 303

    Google Scholar 

  25. Fitch DD (1975) Oxygen consumption in the prosobranch snail, Viviparous contectoides (Mollusca: Gastropoda)—effects of weight and activity. Comp Biochem Physiol 51:815–820

    Article  CAS  Google Scholar 

  26. Winkler LW (1888) Die Bestimmung des in Wasser gelösten Sauerstoffen. Ber Dtsch Chem Ges 21:2843–2855

    Article  Google Scholar 

  27. Roberts RJ (2001) Fish pathology, 3rd edn. W.B. Saunders, London, pp 441–448

    Google Scholar 

  28. Gupta SK, Pal AK, Sahu NP, Dalvi R, Kumar V, Mukherjee SC (2008) Microbial levan in the diet of Labeo rohita Hamilton juveniles: effect on non-specific immunity and histopathological changes after challenge with Aeromonas hydrophila. J Fish Dis 31(9):649–657

    Article  PubMed  CAS  Google Scholar 

  29. Duncan OB (1955) Multiple range and multiple ‘F’ tests. Biometrics 11:1–42

    Article  Google Scholar 

  30. Slabbert JL, Venter EA (1999) Biological assays for aquatic toxicity testing. Water Sci Technol 39(10–11):367–373. doi:10.1016/S0273-1223(99)00300-5

    Article  CAS  Google Scholar 

  31. Ashwani K, Ashok KG (2006) Acute toxicity of mercury to the fingerlings of Indian major carps (Catla, Rohu and Mrigal) in relation to water hardness and temperature. J Environ Biol 27(1):89–92

    Google Scholar 

  32. Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV (2007) Acute toxicity of mercury (HgCl2) to Nile Tilapia, Oreochromis niloticus. Bol do Inst de Pesca 33(1):99–104

    Google Scholar 

  33. Shah SL (2005) Effects of heavy metal accumulation on the 96 h LC50 values in Tench tinca L., 1758. Turk J Vet Anim Sci 29:139–144

    CAS  Google Scholar 

  34. Bharati CH, Sandeep BV, Subba BVS, Rao SR (2001) The effect of mercuric chloride on the respiration of marine intertidal bivalve Donax cuneata. Poll Res 20(1):5–7

    Google Scholar 

  35. DeBoeck G, Desmet H, Blust R (1995) The effect of sub lethal levels of copper on oxygen consumption and ammonia excretion in the common carp Cyprinus carpio (L.). Aquat Toxicol 32:127–141. doi:10.1016/0166-445X(94)00086-6

    Article  CAS  Google Scholar 

  36. James R, Sampath K, Edward DS (2003) Copper toxicity on growth and reproductive potential in an ornamental fish, Xiphophorus heller. Asian Fish Sci 16:317–326

    Google Scholar 

  37. Radhakrishnaiah K, Suresh A, Sivaramakrishna B (1993) Effect of sublethal concentration of mercury on the energetics of freshwater fish Cyprinus carpio (Linnaeus). Acta Biol Hung 4:375–385

    Google Scholar 

  38. Shelke AD, Wani GP (2005) Respiratory response of a freshwater teleost fish Amblypharyngodon mola to certain heavy metals. J Aquat Biol 20(2):193–196

    CAS  Google Scholar 

  39. Wendelaar SE, Pels BM, Svecevieius G (2001) Lethal and sublethal effects of heavy metals mixture on Agosia chrysogaster. Acta Hydrochem 13:98–109

    Google Scholar 

  40. Das S, Gupta A (2012) Effect of cadmium chloride on oxygen consumption gill morphology of Indian flying barb, Esomus danricus. J Environ Biol 33:1057–1061

    PubMed  CAS  Google Scholar 

  41. Aardt WV, Booysen J (2004) Water hardness and the effects of Cd on oxygen consumption in Tilopia sparrmanii. Waster SA 30(1):57–64. doi:10.4314/wsa.v30i1.5027

    Article  Google Scholar 

  42. Kalele Manisha P, Dhande RR (2005) Toxic effect of copper on the gills of fish Labeo rohita. Indian J Environ Sci 9(2):109–111

    Google Scholar 

  43. Hassan BK (2005) The effect of sub lethal concentration of cadmium on gill and liver of carassian carp Carassius carassius (L.). M.Sc. Thesis, college of Agriculture, Basrah University, p 53

  44. Shereena KM, Logaswamy S (2008) Impact of some heavy metals on oxygen consumption by the fish Tilapia mossambicus. Curr Biot 2(3):300–307

    Google Scholar 

  45. Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10(5):263–271. doi:10.1007/s10646-009-0326-1

    Article  PubMed  CAS  Google Scholar 

  46. David M, Mushigeri SB, Prashanth MS (2002) Toxicity of fenvalerate to the freshwater fish, Labeo rohita. Geobios 29:25–28

    CAS  Google Scholar 

  47. Fanta E, Rios F, Romao S, Vianna A, Freiberger S (2003) Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol Environ Saf 3:9–23. doi:10.1016/S0147-6513(02)00044-1

    Article  Google Scholar 

  48. Gupta N, Dua A (2002) Mercury induced architectural alterations in the gill surface of a fresh water fish, Channa punctatus. J Environ Biol 23(4):383–386

    PubMed  CAS  Google Scholar 

  49. Kaoud HA, El-Dahshan AR (2010) Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nat Sci 8(4):147–154

    Google Scholar 

  50. Muthukumaravel K, Rajaraman P (2013) A study on the toxicity of chromium on the histology of gill and liver of freshwater fish Labeo rohita. J Pure Appl Zool 1(2):122–126

    Google Scholar 

  51. Georgieva E, Arnaudov A, Velcheva I (2010) Clinical, hematological and morphological studies on ex situ induced copper intoxication in Crucian carp (Carassius gibelio). J Cent Eur Agric 11:165–172

    Google Scholar 

  52. Athikesavan S, Vincent S, Ambrose T, Velmurugan B (2006) Nickel induced histo-pathological changes in the different tissues of freshwater fish, Hypophthalmichthys molitrix (Valenciennes). J Environ Biol 27:391–395

    PubMed  CAS  Google Scholar 

  53. Olurin KB, Olojo EAA, Mbaka GO, Akindale AT (2006) Histopathological responses of the gill and liver tissues of Clarias gariepinus fingerlings to herbicide, glyphosate. Afr J Biotechnol 5(24):2480–2487. doi:10.5897/AJB2006.000-5102

    Article  CAS  Google Scholar 

  54. Dutta HM, Munshi JSD, Roy PK, Singh NK, Adhikari S, Killius J (1996) Ultrastructural changes in the respiratory lamellae of the catfish, Heteropneustes fossilis after sublethal exposure to melathion. Environ Pollut 92:329–341. doi:10.1016/0269-7491(95)00101-8

    Article  PubMed  CAS  Google Scholar 

  55. Hemalatha S, Banerjee TK (1997) Histopathological analysis of sublethal toxicity of zinc chloride to the respiratory organs of the air-breathing catfish, Heteropneustes fossilis (Bloch). Biol Res 30:11–21. doi:10.1007/s00128-014-1455-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

First author is thankful to the Dean, College of Fisheries, Mangalore for providing the necessary facilities to carry out this work during M.F.Sc. dissertation programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Choudhury.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussan, A., Choudhury, T.G., Ahmed, I. et al. Effect of Mercury and Cadmium on the Oxygen Consumption and Gill Histology of Catla catla (Ham. 1822). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 729–738 (2018). https://doi.org/10.1007/s40011-016-0806-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0806-z

Keywords

Navigation