Skip to main content
Log in

Abstract

Sulphur is now recognized as the fourth major plant nutrient after N, P and K globally. Sulphur in soils comes from the sulphur containing minerals present in parent materials from which the soils are derived and from the plants and animals residues or from the external addition of elemental S or its minerals. Sulphur enters the biological systems from soil through microbial activities involving mineralization of organic matter, immobilization, oxidation and reduction. Plants take up sulphur only as SO =4 and reduce it to form S containing amino acids and other compounds. Amino acid cysteine is the source of sulphur for most other S-compounds in plants. Sulphur containing vitamin thiamine (Vitamin B1) is also synthesized only in plants and not in humans or other animals. Plants also produce vitamin biotin and a number of S-containing metabolites including glutathione, glucosinolates and alliin/allicin. Sulphur deficiency in wheat can lead to poor baking quality and in oilseeds it can lead to reduced oil content and yield. Sulphur is taken in as sulphur containing amino acids (SAAs) cysteine and methionine by human beings. The recommended dietary allowance for SAAs for humans is 14 mg kg−1 body weight. Lack of sulphur can lead to arthritis, muscle and joint stiffness, spondylitis, etc. Dietary supplements containing (chondroitin sulphate, glucosamine sulphate, methylsulfonylmethane etc.) can be beneficial in the treatment of joint diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao CNR (1999) Understanding chemistry. University Press (India) Ltd., Hyderabad

    Google Scholar 

  2. Tandon HLS (2014) History of soil fertility. In: Prasad R, Kumar D, Rana DS, Shivay YS, Tewatia RK (eds) Textbook of plant nutrient management. Indian Society of Agronomy, New Delhi, pp 1–22

    Google Scholar 

  3. Tarbuck EJ, Lutgens FK, Tasa DG (2014) Earth sciences, 14th edn. Printice-Hall, New Jersey

    Google Scholar 

  4. Klein C, Cornelius SH Jr (1986) Manual of mineralogy, 20th edn. Wiley, New York

    Google Scholar 

  5. Rickwood PC (1981) The longest crystals. Am Mineral 66(9/10):885–907

    CAS  Google Scholar 

  6. Nehb W, Vydrak K (2006) Sulfur. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, New York

  7. Eow JS (2002) Recovery of sulphur from acid gas: a review of the technology. Environ Prog 21(3):143–162

    Article  CAS  Google Scholar 

  8. Setter KO, Fiala G, Huber G, Huber H, Segerer A (1990) Hyperthermophilc microorganisms. FEMS Microbiol Rev 75:117–124

    Article  Google Scholar 

  9. Wainwright M (1978) A modified sulphur medium for the isolation of sulphur oxidizing fungi. Plant Soil 49(1):191–193

    Article  Google Scholar 

  10. Shinde DB, Patil PL, Patil BR (1996) Potential use of sulphur oxidizing microorganisms as soil inoculants. Crop Res 11:291–295

    Google Scholar 

  11. Aragono M (1991) Aerobic chemolithoautotrophic bacteria. In: Christjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 7–103

    Google Scholar 

  12. Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition—a review. World J Agric Sci 5(3):270–278

    CAS  Google Scholar 

  13. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic compounds by bacteria: emergence of a common mechanism. Appl Environ Microbiol 67(7):2873–2882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Keppler U, Bennet B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (2000) Sulfit: cytochrome c oxidoreductase from Thiobacillus novellus, purification, characterization and molecular biology of a heterdimeric member of sulfite oxidase family. J Biol Chem 275(18):13202–13212

    Article  Google Scholar 

  15. Barton LL, Fauque AJ (2008) Biochemistry, physiology and biotechnology of sulphate reducing bacteria. Adv Appl Microbiol 68(Ch 2):41–98

    Google Scholar 

  16. Muzer G, Stams AJ (2008) The ecology of biotechnology of sulphate-reducing bacteria. Nat Rev Micriobiol 6:441–454

    Article  Google Scholar 

  17. Pandey DK, Tiwari KN, Tiwari RK (1989) Different forms of sulphur in alluvial soils. J Indian Soc Soil Sci 37:161–164

    CAS  Google Scholar 

  18. Prasad R (2007) Crop nutrition-principles and practices. New Vishal Publications, New Delhi

    Google Scholar 

  19. Williams CH, Steinberg A (1959) Soil sulphur fractions as chemical indices of available sulphur in Australian soils. Aust J Agric Res 10:340–342

    Article  CAS  Google Scholar 

  20. Shukla LM (2001) Evaluation of soil test methods for sulphur in soils of India. Fertil News 46(10):55–58

    Google Scholar 

  21. Jez J (ed) (2008) Sulfur—a missing link between soils, crops and nutrition. Am Soc Agron Mon 50, Madison, WI, American Society of Agronomy

  22. Meng C, Lu X, Cao Z, Hu Z (2004) Effect of sulphur fertilization on yield of rice and oil rape and the critical value of soil and available sulphur. Plant Nutr Fertil Sci 10:218–220 (in Chinese)

    Google Scholar 

  23. Tewatia RK, Yadav DS, Shivay YS (2014) Sulphur management. In: Prasad R, Kumar D, Rana DS, Shivay YS, Tewatia RK (eds) Textbook of plant nutrient management. Indian Society of Agronomy, New Delhi, pp 144–156

    Google Scholar 

  24. Friesen DK (1991) Fate and efficiency of sulphur fertilizer applied to food crops in West Africa. Fertil Res 29:35–44

    Article  CAS  Google Scholar 

  25. Mathot GC, Thelier-Huche L, Lambert R (2009) Sulphur and nitrogen content as sulphur deficiency indicators for grains. Eur J Agron 30:172–176

    Article  CAS  Google Scholar 

  26. Raun WR, Barreto HJ (1992) Maize grain yield response to sulphur fertilization in Central America. Sulphur Agric 16:26–29

    Google Scholar 

  27. Anderson GC, Pevrill KI, Brennan RF (2013) Soil-sulphur—crop response calibration relationships and criteria for field crops grown in Australia. Crop Pasture Sci 64(5):523–530

    Article  Google Scholar 

  28. Singh MV (2001) Importance of sulphur in balanced fertilizers use in India. Fertil News 46(10):13–35

    Google Scholar 

  29. Tandon HLS (2011) Sulphur in soils, crops and fertilizers. FDCO, New Delhi

    Google Scholar 

  30. Shivay YS, Prasad R, Pal M (2014) Effects of levels and sources of sulfur on yield, sulfur and nitrogen concentration and uptake and S-use efficiency in basmati rice. Commu Soil Sci Plant Anal 45(18):2468–2479

    Article  CAS  Google Scholar 

  31. Maity SK, Giri G (2003) Influence of P and S fertilization on productivity and oil yield of groundnut and sunflower in intercropping with simultaneous and staggered planting. Indian J Agron 48(4):267–270

    CAS  Google Scholar 

  32. Sarkar RK, Mallick RB (2009) Effect of nitrogen, sulphur and foliar spray of nitrate salts on performance of spring sunflower (Healianthus annus). Indian J Agric Sci 79(12):986–990

    CAS  Google Scholar 

  33. Prasad R (2005) Rice–wheat cropping systems. Adv Agron 86:255–339

    Article  CAS  Google Scholar 

  34. Tiwari KN, Dwivedi BS, Pathak AN (1984) Evaluation of iron pyrites as sulphur fertilizer. Fertil Res 5(3):235–243

    Article  CAS  Google Scholar 

  35. Tandon HLS, Messick DL (2007) Practical sulphur guide (revised). The Sulphur Institute, Washington, DC

    Google Scholar 

  36. Prasad R, Power JF (1997) Soil fertility management for sustainable agriculture. CRC-Lewis, Boca Raton

    Google Scholar 

  37. Hofgen R, Keft O, Willmitzer L, Hesse H (2001) Manipulation of thiol content in plants. Amino Acids 20(3):291–293

    Article  PubMed  CAS  Google Scholar 

  38. Ferala MP, Patrick WM (2014) Bacterial methionine biosynthesis. Microbiology 160(8):1571–1584

    Article  CAS  Google Scholar 

  39. Dorrestein PC, Zhai H, McLafferly FW, Begley TP (2004) The biosynthesis of thiazole moiety of thiamine: the sulfur transfer mediated by the sulfur carrier protein. Chem Biol 11(10):1373–1381

    PubMed  CAS  Google Scholar 

  40. Lawhoen BG, Mehl RA, Begley TP (2004) Biosynthesis of thiamine pyrimidine: the reconstitution of a remarkable arrangement reaction. Org Biomol Chem 2(17):2538–2546

    Article  Google Scholar 

  41. Begley TP, Downs DM, Ealick SE, McLafferty FW, van Loon AP, Taylor S et al (1999) Thiamine biosynthesis in prokaryotes. Arch Microbiol 171(5):293–300

    Article  PubMed  CAS  Google Scholar 

  42. Tunc-Ozdemir M, Miller G, Song L, Sodek A, Kousseritzky S, Misra AN, Mittler R, Shintani D (2009) Thiamine confers enhanced tolerance to oxidation stress in Arabidopsis. Plant Physiol 151(1):421–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Woodward JB, Abeydeara ND, Paul D, Phillips K, Rapala-Kozik M, Freeling M, Begley TP, Ealick SE, McSteen P, Scanlon MJ (2010) A maize thiamine autotroph is defective in short meristem maintenance. Plant Cell 22(10):3305–3317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Marquet A, Bui BT, Florentin D (2001) Biosynthesis of biotin and lipic acid. Vitam Horm 61:51–101

    Article  PubMed  CAS  Google Scholar 

  45. Chakravarthi S, Jesop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidation stress. EMBO Rep 7(3):271–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pompella A, Visvikis A, Paolicchi A, Tata V, Casinin AF (2003) The changing faces of glutathione—a cellular protagonist. Biochem Pharmacol 66(8):1499–1503

    Article  PubMed  CAS  Google Scholar 

  47. Cuoto N, Malys N, Gaskell S, Barber J (2013) Partition and turnover of glutathione reductase from Sacchromyces cerevisiae: a proteomic approach. J Proteome Res 12(6):2885–2894

    Article  CAS  Google Scholar 

  48. Prasad R (2014) Major sulphur compounds in plants and their role in human nutrition and health. Proc Indian Natl Sci Acad 80(5):1045–1054

    Article  Google Scholar 

  49. Prasad R, Tiwari KN, Biswas BC (2003) Students guide to fertilizers and their efficient use. Potash & Phosphate Institute of Canada-India Programme, Gurgaon

    Google Scholar 

  50. Tiwari KN, Gupta BR (2006) Sulphur for sustainable high yield agriculture in Uttar Pradesh. Indian J Fertil 1(11):37–52

    CAS  Google Scholar 

  51. Zhao FJ, Hawkesford MJ, McGarth SP (1999) Sulphur assimilation and effects on yield and quality in wheat. J Cereal Sci 30(1):1–14

    Article  CAS  Google Scholar 

  52. Gupta RB, Khan K, MacRitchie F (1993) Biochemical basis of flour properties in bread wheat, I. Effect of variation in the quantitysize distribution of polymeric proteins. J Cereal Sci 18(1):23–41

    Article  CAS  Google Scholar 

  53. Randall PJ, Spencer K, Freney JR (1981) Sulphur and nitrogen effects on wheat. I. Concentration of sulphur and nitrogen in grain in relation to the yield response. Aust J Agric Res 32:203–212

    Article  CAS  Google Scholar 

  54. Unger C, Flatyen DN, Grant C, Lukow OM (2002) Impact of sulphur fertilization on spring wheat bread making quality. In: Proceedings of great plains soil fertility conference, Denver, CO, USA, 5–6 March, 2002, pp 107–120. www.ppi.org

  55. Shivay YS, Prasad R, Pal M (2014) Effects of levels and sources of sulfur on yield, sulfur and nitrogen concentration and uptake and S-use efficiency in basmati rice. Commu Soil Sci Plant Anal 45(18):2468–2479

    Article  CAS  Google Scholar 

  56. Gupta AK, C. Jain NK (2006) Delineating sulphur deficiency in soils and response studied in principal crop sequences of semi-arid eastern plains of Rajasthan. In: Proceedings of TSI/FAI/IFA symposium-cum-workshop on sulphur, New Delhi, 4–5 October, 2006, pp 91–115

  57. Kumar S, Singh B, Rajput AL (2001) Response of Indian mustard to sources and levels of sulphur. Indian J Agron 46(3):528–532

    Google Scholar 

  58. Sen P, Hansda S, Roy S (2006) Sulphur in balanced fertilization in urdbean-mustard cropping system in soils of Murshidabad district of West Bengal. In: Proceeding of TSI/FAI/IFA symposium-cum-workshop on SULPHUR, New Delhi, 4–5 October 2006, pp 209–217

  59. Reddy KS, Requeeba M. (2000) Sulphur in balanced fertilization in red soils of Tirupathi in Andhra Pradesh. In: Proceedings of TSI/FAI/IFA symposium-cum-workshop on sulphur, New Delhi, 4–5 October, 2006, pp 119–122

  60. Aulakh MS, Pasricha NS (1997) Role of balanced fertilization in oilseed-based cropping system. Fertil News 42(4):101–111

    Google Scholar 

  61. Nimni ME, Han B, Corodoba F (2007) Are we getting enough sulfur in our diet. Nutr Metab (Lond) 4:24–32

    Article  CAS  Google Scholar 

  62. Rose WC, Wixom RL (1955) The amino acid requirements of man. XIII. The sparing effect of cysteine on the methionine requirement. J Biol Chem 216:753–773

    PubMed  CAS  Google Scholar 

  63. Calamia V, Ruiz-Romero C, Rocha B, Fernández-Puente P, Mateos J, Montell E, Vergés J, Blanco FJ (2010) Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes. Arthritis Res Ther 12(4):R138. doi:10.1186/ar3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Townsend DM, Tew KD, Tariero H (2004) Sulfur containing amino acids and human disease. Biomed Pharmacother 58(1):47–55

    Article  PubMed  CAS  Google Scholar 

  65. Dorge W, Bretkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59(4):595–600

    Article  Google Scholar 

  66. Green JL, Mead KJ, Reynolds KM, Albert D (2013) Oral and intraveinous acetylcystein for treatment of acetaminophen toxicity: a systematic review and meta-analysis. West J Emerg Med 14(3):218–226

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tapel M, van der Giet M, Schwartzfeld C, Laufer U, Lierman D, Zidek W (2000) Prevention of radiographic-contrast-agent induced reductions in renal function by acetylcystein. N Engl J Med 343(2):180–184

    Article  Google Scholar 

  68. Pool J, Black PN (2001) Oral mucolytic drugs foe exacerbations of chronic obstructive pulmonary disease: systematic review. Brit Med J 322(7297):1271–1274

    Article  Google Scholar 

  69. Stey C, Bachman S, Medici TC, Tramer MR (2000) The effect of oral N-acetylcystein in chronic bronchitis—a quantitative systematic review. Eur Respir J 16(2):253–262

    Article  PubMed  CAS  Google Scholar 

  70. Bark M, Malhi GS, Gay LJ, Dean OM (2013) The promise of N-acetylcystein in neuropsychiatry. Trends Pharmacol Sci 34(3):166–173

    Google Scholar 

  71. Wood JM, Decker H, Chavan B, Rokos H, Spencer JD, Hess S, Thornton MJ, Paus R, Schallreuter KU (2009) H2O2 mediated stress affects human hair colour by blunting methionine sulfoxide repair. FASEB J 23(7):2065–2070

    Article  PubMed  CAS  Google Scholar 

  72. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasarathi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10(3):471–480

    Article  PubMed  CAS  Google Scholar 

  73. Kagan BL, Sultzer DL, Rosenlicht N, Gerner RM (1990) Oral S-adenosylmethionine depression: a randomized double blind placebo-controlled trial. Am J Psychiatry 147(5):591–595

    Article  PubMed  CAS  Google Scholar 

  74. Di Padova C (1987) S-adenosylmethionine and treatment of osteoarthritis—review of the clinical studies. Am J Med 83(5A):60–65

    Article  PubMed  Google Scholar 

  75. Miller RA, Buehrer G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4(3):119–125

    Article  PubMed  CAS  Google Scholar 

  76. Richie JP Jr, Lentzinger Y, Parthasarthy S, Malloy V, Orentreich N, Zimmerman JA (2005) Methionine restriction increases blood glutathione and longevity in F334 rats. FASEB J 8(15):1302–1307

    Article  Google Scholar 

  77. Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) (2006) Modern nutrition in health and disease, 10th edn. Lippincott Williams, Baltimore

    Google Scholar 

  78. Krill JJ (1996) Neuropathy of thiamine deficiency disorders. Metab Brain Dis 11(1):9–17

    Article  Google Scholar 

  79. Spinazzi M, Angelini C, Patrini C (2010) Sub-acute sensory ataxia and optic neuropathy with thiamine deficiency. Nat Rev Neuro 16(5):288–293

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the director of the institute and head, Division of Agronomy, Indian Agricultural Research Institute, New Delhi, India, for providing the necessary facilities to write this review. Professor Rajendra Prasad is also grateful to the director, Indian Agricultural Research Institute, for awarding him an Adjunct Professor position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashbir Singh Shivay.

Ethics declarations

Conflict of interest

Both the authors declare that they do not have any conflict of interests for the publication of this review in the Proceedings of the National Academy of Sciences, Biological Sciences.

Additional information

Disclaimer The observations made on nutritional supplements and other sulphur compounds are for the general information of the reader and before using these they are advised to consult the nutrition and medical experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, R., Shivay, Y.S. Sulphur in Soil, Plant and Human Nutrition. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 429–434 (2018). https://doi.org/10.1007/s40011-016-0769-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0769-0

Keywords

Navigation