Skip to main content
Log in

Eggshells of Drosophila melanogaster and D. simulans: Ultrastructure, Measurement and Analyses

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Phenotypic divergence of eggshells between D. melanogaster and D. simulans strains, was compared, using SEM, for analyzing fitness related eco-physiological traits of the eggshells in the two sibling species. The variations of eggshell traits between strains within species, between species and asymmetry in hybrids of two species have been calculated for understanding the demographic success of the two species. The present results revealed that variation of traits between strains within species was not always same which suggest that many traits are not strongly constrained within species. The main findings show that following eco-physiological traits of eggshells are mostly diverged between two species: (i) dorsal appendages (DA) length, (ii) insertion position of DA in main body of eggshell, (iii) the number and size of respiratory pores in dorsal and ventral side of DA, (iv) average length and volume of eggshells and (v) the thickness of chorionic hexagonal ridges. Examination of interspecific hybrids showed that the traits have undergone considerable genetic changes during evolutionary divergence of the two species. The authors propose that divergent ovipositional preference of the females of two species, may be the driving force in establishing species specific life history parameters for avoiding competition at pre-adult stages and demographic success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lachaise D, Silvain JF (2004) How two Afrotropical endemics made two cosmopolitan human commensals: the Drosophila melanogasterD. simulans paleogeographic riddle. Genetica 120:17–39

    Article  PubMed  Google Scholar 

  2. Tsacas L, Lachaise D (1974) Quatrenouvelles especes de laCote-d’Ivoire du genre Drosophila, groupe melanogaster, et discussionde l’origine du sous-groupe melanogaster (Diptera: Drosophilidae). Ann Univ Abidjan E Ecol 7:193–211

    Google Scholar 

  3. Veuille M, Baudry E, Cobb M, Derome N, Gravot E (2004) Historicity and the population genetics of Drosophila melanogaster and D. simulans. Genetica 120:61–70

    Article  CAS  PubMed  Google Scholar 

  4. Pool JE, Aquadra CF (2006) History and structure of sub-Saharan populations of Drosophila melanogaster. Genetics 174:915–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lachaise D, Carious ML, David JR, Lemeunier F, Tsacas L et al (1988) Historical biogeography of the Drosophila melanogaster species subgroup. Evol Biol 22:159–225

    Article  Google Scholar 

  6. Dean MD, Ballard JWO (2004) Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Mol Phylogenet Evol 32:998–1009

    Article  CAS  PubMed  Google Scholar 

  7. Caracristi G, Schlotterer C (2003) Genetic differentiation between American and European Drosophila melanogaster populations could be attributed to admixture of African alleles. Mol Biol Evol 20:792–799

    Article  CAS  PubMed  Google Scholar 

  8. Nunes MDS, Neumeier H, Schlotterer C (2008) Contrasting patterns of natural variation in global Drosophila melanogaster populations. Mol Ecol 17:4470–4479

    Article  CAS  PubMed  Google Scholar 

  9. Gupta JP (2005) A monograph on Indian Drosophilidae. J Sci Res 51:1–252

    Google Scholar 

  10. David JR, Allemand R, Capy P, Chakir M, Gibert P, Petavy G, Moreteau B (2004) Comparative life histories and ecophysiology of Drosophila melanogaster and D. simulans. Genetica 120:151–163

    Article  PubMed  Google Scholar 

  11. Obbard DJ, Jiggins FM, Halligan DL, Little TJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16:580–585

    Article  CAS  PubMed  Google Scholar 

  12. Andolfatto P (2001) Contrasting patterns of X linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol 18:279–290

    Article  CAS  PubMed  Google Scholar 

  13. Nolte V, Schlotterer C (2008) African Drosophila melanogaster and D. simulans populations have similar levels of sequence variability, suggesting comparable effective population size. Genetics 178:405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Begun DJ, Aquadro CF (1993) African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 356:519–520

    Article  Google Scholar 

  15. Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy number polymorphism in Drosophila melanogaster. Science 320:1629–1631

    Article  CAS  PubMed  Google Scholar 

  16. Pool JE, Corbett-Detig RB, Sugino RP, Stevens KA, Cardeno CM, Crepeau MW, Duchen P, Emerson JJ, Saelao P, Begun DJ, Langley CH (2012) Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genet 8:e1003080. doi:10.1371/journal.pgen.1003080

    Article  PubMed  PubMed Central  Google Scholar 

  17. Langley CH, Stevens K, Cardeno C, Lee YCG, Schrider DR, Pool JE, Langley SA, Suarez C, Corbett-Detig RB, Kolaczkowski B, Fang S, Nista PM, Holloway AK, Kern AD, Dewey CN, Song YS, Hahn MW, Begun DJ (2012) Genomic variation in natural populations of Drosophila melanogaster. Genetics 192:533–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aquadro CF, Lado KM, Noon WA (1988) The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics 119:875–888

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Andolfatto P, Wong KM, Bachtrog D (2011) Effective population size and the efficacy of selection on the X chromosomes of two closely related Drosophila species. Genome Biol Evol 3:114–128

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann AA, Parsons PA (1993) Direct and correlated responses to selection for desiccation resistance: a comparison of Drosophila melanogaster and D. simulans. J Evol Biol 6:643–657

    Article  Google Scholar 

  21. Chess KF, Ringo JM (1985) Ovipositional site selection by Drosophila melanogaster and D. simulans. Evolution 39:869–877

    Article  PubMed  Google Scholar 

  22. Capy P, Pla E, David JR (1993) Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographic variations. Genet Sel Evol 25:517–536

    Article  PubMed Central  Google Scholar 

  23. Chakir M, David JR, Pla E, Capy P (1995) Genetic basis of some morphological differences between temperate and equatorial populations of Drosophila melanogaster. Experientia 51:744–748

    Article  CAS  PubMed  Google Scholar 

  24. Gibert P, Capy P, Imasheva A, Moreteau B, Morin JP, Petavy G, David JR (2004) Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Genetica 120:165–179

    Article  CAS  PubMed  Google Scholar 

  25. Jagadeeshan S, Singh RS (2007) Rapid evolution of outer egg membrane proteins in Drosophila melanogaster subgroup: a case of ecologically driven evolution of female reproductive traits. Mol Biol Evol 24:929–938

    Article  CAS  PubMed  Google Scholar 

  26. Kambysellis MP (1975) Ultrastructure of the chorion proteins in very closely related Drosophila species endemic to Hawaii. Syst Zool 23:507–512

    Article  Google Scholar 

  27. Kambysellis MP (1993) Ultrastructural diversity in the egg chorion of Hawaiian Drosophila and Scaptomyza: ecological and phylogenetic consideration. Int J Insect Morphol Embryol 22:417–446

    Article  Google Scholar 

  28. Kambysellis MP, Ho KF, Craddock EM, Piano F, Parisi M, Cohen J (1995) Pattern of ecological status in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny. Curr Biol 5:1129–1139

    Article  CAS  PubMed  Google Scholar 

  29. Margaritis LH, Kafatos FC, Petri WH (1980) The eggshell of Drosophila melanogaster. I. Fine structure of the layers and regions of the wild type eggshell. J Cell Sci 43:1–35

    CAS  PubMed  Google Scholar 

  30. Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez-Avias A (eds) The development of Drosophila melanogaster, I. Cold Spring Harbor press, New York, pp 1–70

    Google Scholar 

  31. Waring GL (2000) Morphogenesis of the eggshell in Drosophila. Int Rev Cytol 198:67–108

    Article  CAS  PubMed  Google Scholar 

  32. Margaritis LH (1985) Structure and physiology of eggshell. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, vol 1. Pergaman press, New York, pp 153–173

    Google Scholar 

  33. Yakoby N, Lembong J, Schüpbach T, Shvartsman SY (2008) Drosophila eggshell is patterned by sequential action of feed forward and feedback loops. Development 135:343–351

    Article  CAS  PubMed  Google Scholar 

  34. Tootle TL, Williams D, Hubb A, Frederick R, Spradling A (2011) Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 6:e19934

    Article  Google Scholar 

  35. Kalantzi-Makri MC, Trougakos IP, Tafas TP, Sourdis J, Margaritis LH (1999) Phylogenetic and taxonomical relationships of the eight species in the melanogaster subgroup of the genus Drosophila (Sophophora) based on the electrophoretic mobility of the major chorion proteins and the eggshell ultrastructure. J Zool (Lond) 249:295–306

    Article  Google Scholar 

  36. Lindsley DL, Zimm G (1992) The genome of Drosophila melanogaster. Academic Press, San Diego

    Google Scholar 

  37. Fly Base Consortium (2003) The Fly Base data base of the Drosophila genome projects and community literature. Nucleic Acids Res 31:172–175

    Article  Google Scholar 

  38. Ashburner M (1989) Drosophila: a laboratory manual. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  39. Chatterjee RN, Chatterjee P, Pal A, Pal-Bhadra M (2007) Drosoiphila simulans Lethal hybrid rescue mutation (Lhr) rescues inviable hybrids by restoring X chromosomal dosage compensation and causes fluctuating asymmetry of development. J Genet 86:203–215

    Article  CAS  PubMed  Google Scholar 

  40. Schwarzkopf L, Blows MW, Caley MJ (1999) Life history consequences of divergent selection of egg size in Drosophila melanogaster. Am Nat 154:333–340

    CAS  PubMed  Google Scholar 

  41. Barbash DA, Ashburner M (2003) A noval system of fertility rescue in Drosophila hybrids reveals a link between hybrid lethality and female sterility. Genetics 163:217–226

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sainz A, Wilder JA, Wolf M, Hollocher H (2003) Drosophila melanogaster and D. simulans rescue strains produce fit offspring, despite divergent centromere-specific histone alleles. Heredity 91:28–35

    Article  CAS  PubMed  Google Scholar 

  43. Lachaise D, Tsacas L (1983) Breeding sites in tropical African drosophilids, vol 22. Academic Press, London, pp 1–332

    Google Scholar 

  44. Sanchez L, Santamaria P (1997) Reproductive isolation and morphogenetic evolution in Drosophila analyzed by breakage of ethological barriers. Genetics 147:231–242

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are also thankful to Dr. Masayoshi Watada, Ehime University, Japan for generously sending the Drosophila stocks. They are thankful to Dr. D. Barbash, Cornell University, USA for facilitating Lhr and In(1)AB, w stocks. The work has been supported by WB DST research Grants [Sanction No. 289 (Sanc.) ST/P/ST/2G-30/2011 dt.19.07.2012] to RNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra Nath Chatterjee.

Ethics declarations

Conflict of interest

They further declared that there is no conflict of interest among authors in publication of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R.N., Kuthe, S. & Chatterjee, P. Eggshells of Drosophila melanogaster and D. simulans: Ultrastructure, Measurement and Analyses. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 733–746 (2017). https://doi.org/10.1007/s40011-015-0647-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0647-1

Keywords

Navigation