Skip to main content
Log in

In silico characterization, homology modeling of Camellia sinensis chitinase and its evolutionary analyses with other plant chitinases

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Camellia sinensis (L.) Kuntze (commonly called tea plant) is an economically important cash crop in India. This plant is prone to infection by several fungal pathogens. Chitinases (EC 3.2.1.14) are enzymes that play a significant role in plants by hydrolyzing the N-acetylglucosamine polymer chitin. The present study entails different in silico characterization of chitinase enzyme using complete chitinase cDNA sequence from C. sinensis (CsChi). Template crystal structure of class I chitinase from Oryza sativa (PDB ID: 2DKV) was used for homology modeling of the CsChi enzyme. The model structure was refined and verified by using Structural Analysis and Verification Server (SAVES). The predicted model was submitted to the Protein Model Data Base (PMDB ID: PM0079561) and was docked with the chitin ligand, obtained from ChemSpider database. The results revealed that Serine in the predicted active site at position 199 of the enzyme is responsible for strong hydrogen bonding affinity with the ligand. Results of the evolutionary analysis showed that the obtained amino acid sequence of the CsChi enzyme belongs to class Ib chitinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84:6750–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roy SC, Chakraborty BN (2012) Analysis of chitinase gene specific transcript accumulation in tea [Camellia sinensis (L.) O. Kuntze] during induced systemic resistance by methyl jasmonate. Indian J Biotechnol 11:142–147

    CAS  Google Scholar 

  3. Wan J, Pentecost G (2013) Potential application of chitin signaling in engineering broad-spectrum disease resistance to fungal and bacterial pathogens in plants. Adv Crop Sci Technol 1:1000e113

    Google Scholar 

  4. Sharma N, Sharma KP, Gaur RK, Gupta VK (2011) Role of chitinase in plant defense. Asian J Biochem 6:29–37

    Article  CAS  Google Scholar 

  5. Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–73

    Article  CAS  Google Scholar 

  6. Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  7. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  8. de A Gerhardt LB, Sachetto-Martins G, Contarini MG, Sandroni M, de P Ferreira R, de Lima VM, Cordeiro MC, de Oliveira DE, Margis-Pinheiro M (1997) Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett 419:69–75

    Article  CAS  PubMed  Google Scholar 

  9. Chandra S, Chakraborty N, Chatterjee A, Rai R, Bera B, Acharya K (2014) Abiotic elicitor-mediated improvement of innate immunity in Camellia sinensis. J Plant Growth Regul 33(4):849–859

    Article  CAS  Google Scholar 

  10. Nisha SN, Prabu GR, Mandal AKA, Arvinth S (2011) Purification and molecular characterization of chitinase from tea leaves [Camellia sinensis (L.) O. Kuntze]. Two A Bud 58:44–47

    Google Scholar 

  11. Saravanakumara D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  12. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from trans-membrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  13. Guruprasad K, Reddy BVP, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Prot Eng 4:155–164

    Article  CAS  Google Scholar 

  14. Ikai AJ (1980) Thermo stability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  PubMed  Google Scholar 

  15. Kyte J, Doolottle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  17. Garnier J, Gibrat JF, Robson B (1996) GOR secondary structure prediction method version IV. Methods Enzymol 266:540–553

    Article  CAS  PubMed  Google Scholar 

  18. Guermeur Y (1997) Combinaison de classifieurs statistiques, Application a la prediction de structure secondaire des proteins. Ph. D. Thesis, Université Paris

  19. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  20. Garnier J, Gibrat JF, Robson B (1996) GOR secondary structure prediction method version IV. Methods Enzymol 266:540–553

    Article  CAS  PubMed  Google Scholar 

  21. Levin JM, Robson B, Garnier J (1986) An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 205(2):303–308

    Article  CAS  PubMed  Google Scholar 

  22. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    CAS  PubMed  Google Scholar 

  23. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  24. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  25. Chandra S, Chatterjee S, Bandyopadhyay SK, Acharya K (2014) In silico molecular modeling and structural analysis of peroxidase enzymes from five different plants species. Res J Pharm Biol Chem Sci 5:1416–1427

    CAS  Google Scholar 

  26. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    Article  CAS  PubMed  Google Scholar 

  27. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85

    Article  PubMed  Google Scholar 

  28. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acids Res 34:W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Gusfield et al. (ed) Proceedings of the 2nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Lecture Notes in Computer Science 2452, Springer Verlag, Italy, pp 185–200

  30. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33:363–367

    Article  Google Scholar 

  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  34. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  35. Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee S, Laskar A, Chatterjee A, Mandal C, Chaudhuri S (2011) In silico structural analysis of an immunotherapeutic glycoprotein T11TS (sheep CD58). Int J Biol Med Res 2:346–359

    Google Scholar 

  37. Sarma K, Dehury B, Sahu J, Sarmah R, Sahoo S, Sahu M, Sen P, Modi MK, Barooah M (2012) A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. J Mol Model 18:4761–4780

    Article  CAS  PubMed  Google Scholar 

  38. Roy SC (2014) Molecular cloning and expression of tea chitinase gene in Pichia pastoris. Int J Adv Biotechnol Res 5(4):612–618

    Google Scholar 

  39. Mayer RT, McCollum TG, Niedz RP, Hearn CJ, McDonald RE, Berdis E, Doostdar H (1996) Characterization of seven basic endochitinases isolated from cell culture of Citrus sinensis (L.). Planta 200:289–295

    Article  CAS  PubMed  Google Scholar 

  40. Wang S, Shao B, Fu H, Rao P (2009) Isolation of a thermostable legumes chitinase and study on the antifungal activity. Appl Microbiol Biotechnol 85:313–321

    Article  CAS  PubMed  Google Scholar 

  41. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  42. George RA, Heringa J (2003) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15(11):871–879

    Article  Google Scholar 

  43. Gokhale RS, Khosla C (2000) Role of linkers in communication between protein modules. Curr Opin Chem Biol 4(1):22–27

    Article  CAS  PubMed  Google Scholar 

  44. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  45. Yang AY, Källblad P, Mancera RL (2004) Molecular modeling prediction of ligand binding site flexibility. J Comput Aided Mol Des 18:235–250

    Article  CAS  PubMed  Google Scholar 

  46. Takaya N, Yamazaki D, Horiuchi H, Ohta A, Takagi M (1998) Cloning and characterization of a chitinase-encoding gene (ChiA) from Aspergillus nidulans, disruption of that decreases germination frequency and hyphal growth. Biosci Biotechnol Biochem 62:60–65

    Article  CAS  PubMed  Google Scholar 

  47. Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm BioAllied Sci 5(1):21–29

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    CAS  PubMed  Google Scholar 

  49. Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N (2005) Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272(7):1745–1755

    Article  CAS  PubMed  Google Scholar 

  50. Funkhouser JD, Aronson NN (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  51. Santos P, Fortunato A, Ribeiro A, Pawlowski K (2008) Chitinases in root nodules. Plant Biotechnol 25:299–307

    Article  CAS  Google Scholar 

  52. Tyler L, Bragg JN, Wu J, Yang X, Tuskan GA, Vogel JP (2010) Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. BMC Genomics 11:600

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Exp Bot 54:2691–2699

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Dutta, A.K., Chandrashekara, K.N. et al. In silico characterization, homology modeling of Camellia sinensis chitinase and its evolutionary analyses with other plant chitinases. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 685–695 (2017). https://doi.org/10.1007/s40011-015-0634-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0634-6

Keywords

Navigation