Skip to main content
Log in

Mineralogical and Petrographical Constraints on the Magnetic Susceptibility of Alkaline Igneous Rocks: A Case Study from the Gölcük Volcano (Isparta), Turkey

  • RESEARCH ARTICLE
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Magnetic susceptibility (SI) measurements and mineralogical and petrographical studies were carried out on the alkaline potassium-rich Gölcük volcanic rocks, situated in the apex of the Isparta Angle in the southwest of Turkey. Magnetic susceptibility was measured on the pyroclastic rocks and outcrops using hand-held KT10-R Magnetic Susceptibility meter. The classification and SI values of the igneous rocks from the study area are as trachyte (SI between 0.45 × 10–3 and 36.3 × 10–3), trachyandesite (SI between 0.5 × 10–3 and 5.7 × 10–3), Clinopyroxene (Cpx)-phyric basaltic trachyandesite (SI: 36.3 × 10–3), Clinopyroxene (Cpx)-phyric trachyandesite (SI: 0.63 × 10–3), alkali feldspar syenite (SI: 20.9 × 10–3 and 26.4 × 10–3), syenite (SI: between 16 × 10–3 and 35.6 × 10–3), leucocratic monzosyenite (SI: 23.3 × 10–3), monzosyenite (SI: 31.2 × 10–3), mafic monzosyenite (SI: 15.4 × 10–3 and 20.7 × 10–3), pyroxene monzonite (SI: 0.56 × 10–3), micaceous pyroxenite (SI: 0.42 × 10–3), tephriphonolites (SI: between 11.3 × 10–3 and 3.32 × 10–3 but most of them between 17 × 10–3 and 25 × 10–3). Based on thin-section investigations, it is clearly seen that igneous rocks contain various amount of opaque minerals. X-ray data show that the opaque minerals are mainly magnetite minerals. Petrographical determinations and magnetic susceptibility SI measurements show that igneous rocks with the same composition and texture may have different magnetic susceptibility values and varying amount of magnetite minerals. On the other hand, some of the volcanic rocks with the same composition but different textures have also different magnetic susceptibility values. The presence of opaque minerals is the dominant factor controlling the magnetic susceptibility value of the Gölcük volcanites and the amount of magnetite mineral is directly proportional to the magnitude of the magnetic susceptibility. It is not plausible to suggest that rocks existing in the same classification should have the same magnetic susceptibility values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vernon RH (1961) Magnetic susceptibility as a measure of total iron plus manganese in some ferromagnesian silicate minerals. Am Miner 46:1141–1153

    Google Scholar 

  2. Gautam P, Hosoi A, Regmi KR, Khadka DR, Fujiwara Y (2000) Magnetic minerals and magnetic properties of the Siwalik Group sediments of the Karnali river section in Nepal. Earth Planets Space 52:337–345

    Article  ADS  Google Scholar 

  3. Lee TQ, Angelier J (2000) Tectonic significance of magnetic susceptibility fabrics in Plio-Quaternary mudstones of southwestern foothills. Taiwan, Earth Planets Space 52:527–538

    Article  ADS  Google Scholar 

  4. Pattan JN, Parthiban G, Banakar VK, Tomer A, Kulkarni M (2008) Relationship between chemical composition and magnetic susceptibility in sediment cores from Central Indian Ocean Basin. J Earth Syst Sci 117(2):113–119

    Article  ADS  Google Scholar 

  5. Borradaile G, Mothersill J, Tarling D, Alford C (1985/86) Sources of magnetic susceptibility in a slate. Earth Planet Sci Lett 76:336–340.

  6. Nakamura N, Borradaile G (2004) Metamorphic control of magnetic susceptibility and magnetic fabrics: a 3-D projection. In: Martin-Hernandez F, Lüneburg CM, Aubourg C, Jackson M (ed) Magnetic fabric: methods and applications. Geological Society Special Publications 238, pp 61–68.

  7. Till JL, Cogn JP, Marquer D, Poilvet JC (2015) Magnetic fabric evolution in ductile shear zones: examples in metagranites of the Aar Massif (Swiss Central Alps). Terra Nova 27:184–194

    Article  ADS  Google Scholar 

  8. Pandarinath K, Shankar R, Torres-Alvarado IS, Warrier AK (2013) Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration. Arab J Geosci 7(7):2851–2860

    Article  Google Scholar 

  9. Venkatachalapathy R, Veerasingam S, Basavaiah N, Ramkumar T, Deenadayalan K (2011) Environmental magnetic and geochemical characteristics of Chennai coastal sediments, Bay of Bengal, India. J Earth Syst Sci 120(5):885–895

    Article  ADS  Google Scholar 

  10. Panaiotu C, Necula C, Merezeanu T, Panaiotu A, Corban C (2011) Anisotropy of magnetic susceptibility of Quaternary lava flows from the east Carpathians. Romanian Rep Phys 63(2):526–534

    Google Scholar 

  11. Sangode SJ, Sharma R, Mahajan R, Basavaiah N, Srivastava P, Gudadhe SS, Meshram DC, Venkateshwarulu M (2017) Anisotropy of magnetic susceptibility and rock magnetic applications in the Deccan Volcanic Province based on some case studies. J Geol Soc India 89:631–642

    Article  Google Scholar 

  12. Murdock KJ, Wilkie K, Brown LL (2013) Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El’gygytgyn, Russia Far East. Clim Past 9:467–479

    Article  Google Scholar 

  13. Geuna SE, McEnroe SA, Robinson P, Escosteguy LD (2008) Magnetic petrology of the Devonian Achala Batholith, Argentina: titanohaematite as an indicator of highly oxidized magma during crystallization and cooling. Geophys J Int 175:925–941

    Article  ADS  Google Scholar 

  14. Ishihara S, Robb LJ, Anhaeusser CR, Imai A (2002) Granitoid series in terms of magnetic susceptibility: a Case Study from the Barberton Region, South Africa. Gondwana Res 5(3):581–589

    Article  ADS  Google Scholar 

  15. Clark DA, French DH, Lackie MA, Schmidt PW (1992) Magnetic petrology: application of integrated rock magnetic and petrological techniques to geological interpretation of magnetic surveys. Explor Geophys 23:65–68

    Article  ADS  Google Scholar 

  16. Clark DA (2020) Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation. Don Emerson’s Best Exploration Geophys Preview 205:43–68

    Google Scholar 

  17. Lefevre C, Bellon H, Poisson A (1983) Pre´sences de leucitites dans le volcanisme Plioce`ne de la re´gion d’Isparta (Taurides occidentales, Turquie). Comptes-Rendus de l’Acade´mie des Sciences 297(2):367–372.

  18. Platevoet B, Scaillet S, Guillou H, Blamart D, Nomade S, Massault M, Poisson A, Elitok Ö, Özgür N, Yagmurlu F, Yılmaz K (2008) Pleistocene eruptive chronology of the Gölcük volcano, Isparta Angle, Turkey. Quaternaire 19(2):147–156

    Article  Google Scholar 

  19. Alıcı P, Temel A, Gourgaud A, Kiffer G, Gundogdu MN (1998) Petrology and geochemistry of potassic rocks in the Gölcük area (Isparta, SW Turkey): Genesis of enriched alkaline magmas. J Volcanol Geoth Res 85(1–4):423–446

    Article  ADS  Google Scholar 

  20. Nemec W, Kazancı N, Mitchell JG (1998) Pleistocene explosions and pyroclastic currents in west-central Anatolia. Boreas 27:311–332

    Article  Google Scholar 

  21. Elitok Ö, Özgür N, Drüppel K, Dilek Y, Platevoet B, Guillou H, Poisson A, Scaillet S, Satır M, Siebel W, Bardintzeff JM, Deniel C, Yılmaz K (2010) Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. Int Geol Rev 52(4–6):454–504

    Article  Google Scholar 

  22. Juteau T (1980) Ophiolites of Turkey. Ofioliti 2:199–237

    Google Scholar 

  23. Elitok Ö, Kamacı Z, Dolmaz MN, Yılmaz K, Şener M (2010) Relationship between chemical composition and magnetic susceptibility in the alkaline volcanics from the Isparta area, SW Turkey. J Earth Syst Sci 119(6):853–860

    Article  ADS  Google Scholar 

  24. Platevoet B, Elitok Ö, Guillou H, Bardintzeff JM, Yagmurlu F, Nomade S, Poisson A, Deniel C, Özgür N (2014) Petrology of Quaternary volcanic rocks and related plutonic xenoliths from Gölcük volcano, Isparta Angle, Turkey: Origin and evolution of the high-K alkaline series. J Asian Earth Sci 92:53–76

    Article  ADS  Google Scholar 

  25. Carmichael RS (1989) Practical handbook of Physical properties of Rocks and minerals. CRC Press, Boca Raton

    Google Scholar 

  26. Oniku SA, Osazuwa IB, Meludu OC (2008) Preliminary report on magnetic susceptibility measurements on rocks within the Zaria granite batholith, Nigeria. Geofizika 25(2):203–213

    Google Scholar 

  27. Gleizes G, Nedelec A, Bouchez JL, Autran A, Rochette P (1993) Magnetic susceptibility of the Mont-Louis Andorra ilmenite-type granite (Pyrenees): a new tool for the petrographic characterization and regional mapping of zoned granite plutons. J Geophys Res Solid Earth 98(B3):4317–4331

    Article  Google Scholar 

  28. Blevin PL (2003) Metallogeny of granitic rocks. In: Blevin P, Jones M, Chappell B (ed) Magmas to mineralisation, The Ishihara Symposium, Geoscience Australia, Record, vol 14, pp 1–4.

  29. Aydın A, Ferré EC, Aslan Z (2007) The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: example from the Saruhan granitoids, NE Turkey. Tectonophysics 441:85–95

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Each author has made substantial contributions to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Evrim Tütünsatar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tütünsatar, H.E., Elitok, Ö., Yilmaz, M. et al. Mineralogical and Petrographical Constraints on the Magnetic Susceptibility of Alkaline Igneous Rocks: A Case Study from the Gölcük Volcano (Isparta), Turkey. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 553–563 (2023). https://doi.org/10.1007/s40010-023-00841-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00841-z

Keywords

Navigation