Skip to main content
Log in

On Application of a Positioning System Using Photosensors with User Mobility Support in HealthCare System

  • Scientific Research Paper
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

An indoor visible light positioning system using the received signal strength intensity method and the trilateration technique with user mobility support is proposed for applications, e.g. healthcare. Accurate position information of medical staffs and patients is required for data transmission, tracking, navigation, etc. Seamless data transmission while user is on the move has been conceptualized considering the optical network formed by photosensor (light emitting diode)-based transmitters. Efficiency of these services depends on the position accuracy. To investigate factors contributing to higher position errors in a practical environment, the proposed system is evaluated. Evaluation is done through simulation and experiment for different channel conditions, and the receiver rotation due to user mobility. Simulation results show an average two-dimensional position error of 0.32 m in a channel with a strong background light illumination level of − 60 dBm. Experimental results show that the mean position error is 0.7 m in a normal daytime indoor light condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Spectrum Crunch: The cell phone industry hits its limits (2012) http://money.cnn.com/2012/02/21/technology/spectrum_crunch/index.htm

  2. Bahl P, Padmanabhan VN (2000) RADAR: an in-building RF-based user location and tracking system. In: IEEE INFOCOM, 19th annual joint conference of the IEEE computer and communications societies, vol 2, Tel Aviv, pp 775–784 https://doi.org/10.1109/infcom.2000.832252

  3. Chintalapudi K, Iyer AP, Padmanabhan VN (2010) Indoor localization without the pain. ACM MOBICOM. https://doi.org/10.1145/1859995.1860016

  4. Komine T, Nakagawa M (2004) Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron. https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  5. Li L, Hu P, Peng C, Shen G, Zhao F (2014) Epsilon: a visible light based positioning system. In: Proceedings of 11th USENIX conference on networked systems design and implementation, NSD’14, pp 331–343, ISBN: 978-1-931971-09-6

  6. Yamaguchi S et al (2014) Design and performance evaluation of VLC indoor positioning system using optical orthogonal codes. In: Proceedings of 5th IEEE international conference on communications and electronics (ICCE), pp 54–59. https://doi.org/10.3390/computation7010007

  7. Hussein AT, Elmirghani JMH (2015) Mobile multi-gigabit visible light communication systems in realistic indoor environment. IEEE J Light Wave Technol 33(15):3293–3307. https://doi.org/10.1109/FJLT.2015.2439051

    Article  ADS  Google Scholar 

  8. Kavehrad M (2010) Sustainable energy-efficient wireless applications using light. IEEE Commun Mag. https://doi.org/10.1109/MCOM.2010.5673074

    Article  Google Scholar 

  9. Iturralde D, Soto I, Azurdia C, Krommenacker N, Ghassemlooy Z, Becerra N (2014) A new location system based on space–time codes in an underground environment using visible light communications. In: 9th international symposium on communication systems, networks and digital signal processing (CSNDSP), pp 1165–1169, Manchester, UK. https://doi.org/10.1109/FCSNDSP.2014.6924006

  10. Alavikia Z, Khadivi P, Hashemi MR (2012) A model for QoS-aware wireless communication in hospitals. J Med Signals Sens 2(1):1–10. https://doi.org/10.4103/2228-7477.103140

    Article  Google Scholar 

  11. Lou X, O’Brien WJ, Julien CL (2011) Comparative evaluation of received signal-strength index (RSSI) based indoor localization techniques for construction jobsites. Adv Eng Inform Inf Min Retrieval Des 25(2):355–363. https://doi.org/10.1016/j.aei.2010.09.003

    Article  Google Scholar 

  12. Cossu G, Presi M, Corsini R, Choudhury P (2011) A visible light communication aided optical wireless system. IEEE Globecomm workshop, pp 802–807. https://doi.org/10.1109/GLOCOMW.2011.6162565

  13. Kim HS, Kim DR, Yang SH, Son YH, Han SK (2013) An indoor visible light communication positioning system using a RF carrier allocation technique. J Lightwave Technol. https://doi.org/10.1109/JLT.2012.2225826

    Article  Google Scholar 

  14. Zhou Z, Kavehrad M, Deng P (2012) Indoor positioning algorithm using light-emitting diode visible light communications. Opt Eng 51(8):085009. https://doi.org/10.1117/1.OE.51.8.085009

    Article  ADS  Google Scholar 

  15. Schmid S, Corbellini G, Mangold S, Gross TR (2013) LED-to-LED visible light communication networks. In: Proceedings of the 14th ACM international symposium on mobile ad hoc networking and computing, (MOBIHOC), pp 1–10. https://doi.org/10.1145/2491288.2491293

  16. Ghassemlooy Z, Poopoola W, Rajbhandari S (2012) Optical wireless communications: system and channel modelling with MATLAB. CRC Press, Cambridge. https://doi.org/10.1201/b12687

    Book  Google Scholar 

  17. Haas H, Liang Y, Wang Y, Chen C (2015) What is Li Fi? IEEE J Light Wave Technol. https://doi.org/10.1109/JLT.2015.2510021

    Article  Google Scholar 

  18. Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2014) TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones. Commun ACM 57(3):99–106. https://doi.org/10.1145/2619091

    Article  Google Scholar 

  19. Mejia DA, Favela J, Moran AL (2010) Understanding and supporting lightweight communication in hospital work. IEEE Trans Inf Technol Biomed. https://doi.org/10.1109/TITB.2009.2033384

    Article  Google Scholar 

  20. Sruthi K, Kripesh EV, Unnikrishna Menon KA (2017) A survey of remote patient monitoring systems for the measurement of multiple physiologial parameters. Health Technol 7(2–3):153–159. https://doi.org/10.1007/s12553-016-0171-1

    Article  Google Scholar 

  21. Thirugnanam T, Ghalib MR (2020) A new healthcare architecture using IoV technology for continuous health monitoring system. Health Technol. https://doi.org/10.1007/s12553-019-00306-7

    Article  Google Scholar 

  22. Schiller JH (2003) Mobile communications. Pearson Education Limited, London

    Google Scholar 

  23. Siau K (2003) Health care informatics. IEEE Trans Inf Technol Biomed. https://doi.org/10.1109/TITB.2002.805449

    Article  Google Scholar 

  24. Biswas S, Neogy S (2010) A mobility based checkpointing protocol for mobile computing system. Int J Comput Sci Inf Technol 2(1):135–151

    Google Scholar 

  25. Rahaim MB, Vegni AM, Little TDC (2011) A hybrid radio frequency and broadcast visible light communication system. IEEE Globecom Workshops. https://doi.org/10.1109/GLOCOMW.2011.6162563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Ghassemlooy, Z., Le-Minh, H. et al. On Application of a Positioning System Using Photosensors with User Mobility Support in HealthCare System. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 121–133 (2023). https://doi.org/10.1007/s40010-022-00792-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-022-00792-x

Keywords

Navigation